913 research outputs found

    State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms

    Get PDF
    Searching biological sequence database is a common and repeated task in bioinformatics and molecular biology. The Smith–Waterman algorithm is the most accurate method for this kind of search. Unfortunately, this algorithm is computationally demanding and the situation gets worse due to the exponential growth of biological data in the last years. For that reason, the scientific community has made great efforts to accelerate Smith–Waterman biological database searches in a wide variety of hardware platforms. We give a survey of the state-of-the-art in Smith–Waterman protein database search, focusing on four hardware architectures: central processing units, graphics processing units, field programmable gate arrays and Xeon Phi coprocessors. After briefly describing each hardware platform, we analyse temporal evolution, contributions, limitations and experimental work and the results of each implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith–Waterman protein searches considering next generations of hardware architectures and its upcoming technologies.Instituto de Investigación en InformáticaUniversidad Complutense de Madri

    Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    Full text link
    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics

    Protein alignment HW/SW optimizations

    Get PDF
    Biosequence alignment recently received an amazing support from both commodity and dedicated hardware platforms. The limitless requirements of this application motivate the search for improved implementations to boost processing time and capabilities. We propose an unprecedented hardware improvement to the classic Smith-Waterman (S-W) algorithm based on a twofold approach: i) an on-the-fly gap-open/gap-extension selection that reduces the hardware implementation complexity; ii) a pre-selection filter that uses reduced amino-acid alphabets to screen out not-significant sequences and to shorten the S-Witerations on huge reference databases.We demonstrated the improvements w.r.t. a classic approach both from the point of view of algorithm efficiency and of HW performance (FPGA and ASIC post-synthesis analysis)

    ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis

    Full text link
    Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. We identify an urgent need for a flexible, high-performance, and energy-efficient HW/SW co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM tackles the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out negligible computations using a hardware-based filter, and 4) minimizing redundant computations. ApHMM achieves substantial speedups of 15.55x - 260.03x, 1.83x - 5.34x, and 27.97x when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29x - 59.94x, 1.03x - 1.75x, and 1.03x - 1.95x, respectively, while improving their energy efficiency by 64.24x - 115.46x, 1.75x, 1.96x.Comment: Accepted to ACM TAC

    Comparative Analysis of Computationally Accelerated NGS Alignment

    Get PDF
    The Smith-Waterman algorithm is the basis of most current sequence alignment technology, which can be used to identify similarities between sequences for cancer detection and treatment because it provides researchers with potential targets for early diagnosis and personalized treatment. The growing number of DNA and RNA sequences available to analyze necessitates faster alignment processes than are possible with current iterations of the Smith-Waterman (S-W) algorithm. This project aimed to identify the most effective and efficient methods for accelerating the S-W algorithm by investigating recent advances in sequence alignment. Out of a total of 22 articles considered in this project, 17 articles had to be excluded from the study due to lack of standardization of data reporting. Only one study by Chen et al. obtained in this project contained enough information to compare accuracy and alignment speed. When accuracy was excluded from the criteria, five studies contained enough information to rank their efficiency. The study conducted by Rucci et al. was the fastest at 268.83 Giga Cell Updates Per Second (GCUPS), and the method by Pérez-Serrano et al. came close at 229.93 GCUPS while testing larger sequences. It was determined that reporting standards in this field are not sufficient, and the study by Chen et al. should set a benchmark for future reporting

    FPGA acceleration of sequence analysis tools in bioinformatics

    Full text link
    Thesis (Ph.D.)--Boston UniversityWith advances in biotechnology and computing power, biological data are being produced at an exceptional rate. The purpose of this study is to analyze the application of FPGAs to accelerate high impact production biosequence analysis tools. Compared with other alternatives, FPGAs offer huge compute power, lower power consumption, and reasonable flexibility. BLAST has become the de facto standard in bioinformatic approximate string matching and so its acceleration is of fundamental importance. It is a complex highly-optimized system, consisting of tens of thousands of lines of code and a large number of heuristics. Our idea is to emulate the main phases of its algorithm on FPGA. Utilizing our FPGA engine, we quickly reduce the size of the database to a small fraction, and then use the original code to process the query. Using a standard FPGA-based system, we achieved 12x speedup over a highly optimized multithread reference code. Multiple Sequence Alignment (MSA)--the extension of pairwise Sequence Alignment to multiple Sequences--is critical to solve many biological problems. Previous attempts to accelerate Clustal-W, the most commonly used MSA code, have directly mapped a portion of the code to the FPGA. We use a new approach: we apply prefiltering of the kind commonly used in BLAST to perform the initial all-pairs alignments. This results in a speedup of from 8Ox to 190x over the CPU code (8 cores). The quality is comparable to the original according to a commonly used benchmark suite evaluated with respect to multiple distance metrics. The challenge in FPGA-based acceleration is finding a suitable application mapping. Unfortunately many software heuristics do not fall into this category and so other methods must be applied. One is restructuring: an entirely new algorithm is applied. Another is to analyze application utilization and develop accuracy/performance tradeoffs. Using our prefiltering approach and novel FPGA programming models we have achieved significant speedup over reference programs. We have applied approximation, seeding, and filtering to this end. The bulk of this study is to introduce the pros and cons of these acceleration models for biosequence analysis tools
    corecore