43,976 research outputs found

    Parallel Genetic Algorithms with GPU Computing

    Get PDF
    Genetic algorithms (GAs) are powerful solutions to optimization problems arising from manufacturing and logistic fields. It helps to find better solutions for complex and difficult cases, which are hard to be solved by using strict optimization methods. Accelerating parallel GAs with GPU computing have received significant attention from both practitioners and researchers, ever since the emergence of GPU-CPU heterogeneous architectures. Designing a parallel algorithm on GPU is different fundamentally from designing one on CPU. On CPU architecture, typically data or tasks are distributed across tens of threads or processes, while on GPU architecture, more than hundreds of thousands of threads run. In order to fully utilize the computing power of GPUs, the design approaches and implementation strategies of parallel GAs should be re-probed. In the chapter, a concise overview of parallel GAs on GPU is given from the perspective of GPU architecture. The concept of parallelism granularity is redefined, the aspect of data layout is discussed on how it will affect the kernel performance, and the hierarchy of threads is examined on how threads are organized in the grid and blocks to expose sufficient parallelism to GPU. Some future research is discussed. A hybrid parallel model, based on the feature of GPU architecture, is suggested to build up efficient parallel GAs for hyper-scale problems

    A Review on Software Architectures for Heterogeneous Platforms

    Full text link
    The increasing demands for computing performance have been a reality regardless of the requirements for smaller and more energy efficient devices. Throughout the years, the strategy adopted by industry was to increase the robustness of a single processor by increasing its clock frequency and mounting more transistors so more calculations could be executed. However, it is known that the physical limits of such processors are being reached, and one way to fulfill such increasing computing demands has been to adopt a strategy based on heterogeneous computing, i.e., using a heterogeneous platform containing more than one type of processor. This way, different types of tasks can be executed by processors that are specialized in them. Heterogeneous computing, however, poses a number of challenges to software engineering, especially in the architecture and deployment phases. In this paper, we conduct an empirical study that aims at discovering the state-of-the-art in software architecture for heterogeneous computing, with focus on deployment. We conduct a systematic mapping study that retrieved 28 studies, which were critically assessed to obtain an overview of the research field. We identified gaps and trends that can be used by both researchers and practitioners as guides to further investigate the topic

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    A Study of Basic 3D Visualization Architecture for Network Operation and Management Tools

    Get PDF
    Recently, network operation tools using 3D visualization technologies have become more and more important. Generally, 3D visualized network operation tools are useful for computer network management or operation. However, a development of 3D visualized network operation tools requires advanced technical skills and highly cost. On the other hand, 3D computer graphics technologies become more familiar in recent years because of that computer hardwares and softwares are rapidly growing and obtain high performance. In this research, we have developed basic architecture of 3D visualization system for network operation and management tools, by using an open source 3DCG software ``Blender'' and a programming language ``Python``. In this paper, we explain details, results of evaluation and efficiency of the proposed architecture
    • …
    corecore