1,082 research outputs found

    Bringing UMAP Closer to the Speed of Light with GPU Acceleration

    Full text link
    The Uniform Manifold Approximation and Projection (UMAP) algorithm has become widely popular for its ease of use, quality of results, and support for exploratory, unsupervised, supervised, and semi-supervised learning. While many algorithms can be ported to a GPU in a simple and direct fashion, such efforts have resulted in inefficient and inaccurate versions of UMAP. We show a number of techniques that can be used to make a faster and more faithful GPU version of UMAP, and obtain speedups of up to 100x in practice. Many of these design choices/lessons are general purpose and may inform the conversion of other graph and manifold learning algorithms to use GPUs. Our implementation has been made publicly available as part of the open source RAPIDS cuML library (https://github.com/rapidsai/cuml)

    GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding

    Full text link
    Learning continuous representations of nodes is attracting growing interest in both academia and industry recently, due to their simplicity and effectiveness in a variety of applications. Most of existing node embedding algorithms and systems are capable of processing networks with hundreds of thousands or a few millions of nodes. However, how to scale them to networks that have tens of millions or even hundreds of millions of nodes remains a challenging problem. In this paper, we propose GraphVite, a high-performance CPU-GPU hybrid system for training node embeddings, by co-optimizing the algorithm and the system. On the CPU end, augmented edge samples are parallelly generated by random walks in an online fashion on the network, and serve as the training data. On the GPU end, a novel parallel negative sampling is proposed to leverage multiple GPUs to train node embeddings simultaneously, without much data transfer and synchronization. Moreover, an efficient collaboration strategy is proposed to further reduce the synchronization cost between CPUs and GPUs. Experiments on multiple real-world networks show that GraphVite is super efficient. It takes only about one minute for a network with 1 million nodes and 5 million edges on a single machine with 4 GPUs, and takes around 20 hours for a network with 66 million nodes and 1.8 billion edges. Compared to the current fastest system, GraphVite is about 50 times faster without any sacrifice on performance.Comment: accepted at WWW 201
    corecore