53 research outputs found

    Towards Name Disambiguation: Relational, Streaming, and Privacy-Preserving Text Data

    Get PDF
    In the real world, our DNA is unique but many people share names. This phenomenon often causes erroneous aggregation of documents of multiple persons who are namesakes of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper attribution of credit or blame in digital forensics. To resolve this issue, the name disambiguation task 1 is designed to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing algorithms for this task mainly suffer from the following drawbacks. First, the majority of existing solutions substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable in privacy sensitive domains. Instead we solve the name disambiguation task in restricted setting by leveraging only the relational data in the form of anonymized graphs. Second, most of the existing works for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task should be performed in an online streaming fashion in order to identify records of new ambiguous entities having no preexisting records. Finally, we investigate the potential disclosure risk of textual features used in name disambiguation and propose several algorithms to tackle the task in a privacy-aware scenario. In summary, in this dissertation, we present a number of novel approaches to address name disambiguation tasks from the above three aspects independently, namely relational, streaming, and privacy preserving textual data

    Synthetic data and re-identification risks

    Get PDF

    Contribution to privacy-enhancing tecnologies for machine learning applications

    Get PDF
    For some time now, big data applications have been enabling revolutionary innovation in every aspect of our daily life by taking advantage of lots of data generated from the interactions of users with technology. Supported by machine learning and unprecedented computation capabilities, different entities are capable of efficiently exploiting such data to obtain significant utility. However, since personal information is involved, these practices raise serious privacy concerns. Although multiple privacy protection mechanisms have been proposed, there are some challenges that need to be addressed for these mechanisms to be adopted in practice, i.e., to be “usable” beyond the privacy guarantee offered. To start, the real impact of privacy protection mechanisms on data utility is not clear, thus an empirical evaluation of such impact is crucial. Moreover, since privacy is commonly obtained through the perturbation of large data sets, usable privacy technologies may require not only preservation of data utility but also efficient algorithms in terms of computation speed. Satisfying both requirements is key to encourage the adoption of privacy initiatives. Although considerable effort has been devoted to design less “destructive” privacy mechanisms, the utility metrics employed may not be appropriate, thus the wellness of such mechanisms would be incorrectly measured. On the other hand, despite the advent of big data, more efficient approaches are not being considered. Not complying with the requirements of current applications may hinder the adoption of privacy technologies. In the first part of this thesis, we address the problem of measuring the effect of k-anonymous microaggregation on the empirical utility of microdata. We quantify utility accordingly as the accuracy of classification models learned from microaggregated data, evaluated over original test data. Our experiments show that the impact of the de facto microaggregation standard on the performance of machine-learning algorithms is often minor for a variety of data sets. Furthermore, experimental evidence suggests that the traditional measure of distortion in the community of microdata anonymization may be inappropriate for evaluating the utility of microaggregated data. Secondly, we address the problem of preserving the empirical utility of data. By transforming the original data records to a different data space, our approach, based on linear discriminant analysis, enables k-anonymous microaggregation to be adapted to the application domain of data. To do this, first, data is rotated (projected) towards the direction of maximum discrimination and, second, scaled in this direction, penalizing distortion across the classification threshold. As a result, data utility is preserved in terms of the accuracy of machine learned models for a number of standardized data sets. Afterwards, we propose a mechanism to reduce the running time for the k-anonymous microaggregation algorithm. This is obtained by simplifying the internal operations of the original algorithm. Through extensive experimentation over multiple data sets, we show that the new algorithm gets significantly faster. Interestingly, this remarkable speedup factor is achieved with no additional loss of data utility.Les aplicacions de big data impulsen actualment una accelerada innovació aprofitant la gran quantitat d’informació generada a partir de les interaccions dels usuaris amb la tecnologia. Així, qualsevol entitat és capaç d'explotar eficientment les dades per obtenir utilitat, emprant aprenentatge automàtic i capacitats de còmput sense precedents. No obstant això, sorgeixen en aquest escenari serioses preocupacions pel que fa a la privacitat dels usuaris ja que hi ha informació personal involucrada. Tot i que s'han proposat diversos mecanismes de protecció, hi ha alguns reptes per a la seva adopció en la pràctica, és a dir perquè es puguin utilitzar. Per començar, l’impacte real d'aquests mecanismes en la utilitat de les dades no esta clar, raó per la qual la seva avaluació empírica és important. A més, considerant que actualment es manegen grans volums de dades, una privacitat usable requereix, no només preservació de la utilitat de les dades, sinó també algoritmes eficients en temes de temps de còmput. És clau satisfer tots dos requeriments per incentivar l’adopció de mesures de privacitat. Malgrat que hi ha diversos esforços per dissenyar mecanismes de privacitat menys "destructius", les mètriques d'utilitat emprades no serien apropiades, de manera que aquests mecanismes de protecció podrien estar sent incorrectament avaluats. D'altra banda, tot i l’adveniment del big data, la investigació existent no s’enfoca molt en millorar la seva eficiència. Lamentablement, si els requisits de les aplicacions actuals no es satisfan, s’obstaculitzarà l'adopció de tecnologies de privacitat. A la primera part d'aquesta tesi abordem el problema de mesurar l'impacte de la microagregació k-Gnónima en la utilitat empírica de microdades. Per això, quantifiquem la utilitat com la precisió de models de classificació obtinguts a partir de les dades microagregades. i avaluats sobre dades de prova originals. Els experiments mostren que l'impacte de l’algoritme de rmicroagregació estàndard en el rendiment d’algoritmes d'aprenentatge automàtic és usualment menor per a una varietat de conjunts de dades avaluats. A més, l’evidència experimental suggereix que la mètrica tradicional de distorsió de les dades seria inapropiada per avaluar la utilitat empírica de dades microagregades. Així també estudiem el problema de preservar la utilitat empírica de les dades a l'ésser anonimitzades. Transformant els registres originaIs de dades en un espai de dades diferent, el nostre enfocament, basat en anàlisi de discriminant lineal, permet que el procés de microagregació k-anònima s'adapti al domini d’aplicació de les dades. Per això, primer, les dades són rotades o projectades en la direcció de màxima discriminació i, segon, escalades en aquesta direcció, penalitzant la distorsió a través del llindar de classificació. Com a resultat, la utilitat de les dades es preserva en termes de la precisió dels models d'aprenentatge automàtic en diversos conjunts de dades. Posteriorment, proposem un mecanisme per reduir el temps d'execució per a la microagregació k-anònima. Això s'aconsegueix simplificant les operacions internes de l'algoritme escollit Mitjançant una extensa experimentació sobre diversos conjunts de dades, vam mostrar que el nou algoritme és bastant més ràpid. Aquesta acceleració s'aconsegueix sense que hi ha pèrdua en la utilitat de les dades. Finalment, en un enfocament més aplicat, es proposa una eina de protecció de privacitat d'individus i organitzacions mitjançant l'anonimització de dades sensibles inclosos en logs de seguretat. Es dissenyen diferents mecanismes d'anonimat per implementar-los en base a la definició d'una política de privacitat, en el context d'un projecte europeu que té per objectiu construir un sistema de seguretat unificat

    Contribution to privacy-enhancing tecnologies for machine learning applications

    Get PDF
    For some time now, big data applications have been enabling revolutionary innovation in every aspect of our daily life by taking advantage of lots of data generated from the interactions of users with technology. Supported by machine learning and unprecedented computation capabilities, different entities are capable of efficiently exploiting such data to obtain significant utility. However, since personal information is involved, these practices raise serious privacy concerns. Although multiple privacy protection mechanisms have been proposed, there are some challenges that need to be addressed for these mechanisms to be adopted in practice, i.e., to be “usable” beyond the privacy guarantee offered. To start, the real impact of privacy protection mechanisms on data utility is not clear, thus an empirical evaluation of such impact is crucial. Moreover, since privacy is commonly obtained through the perturbation of large data sets, usable privacy technologies may require not only preservation of data utility but also efficient algorithms in terms of computation speed. Satisfying both requirements is key to encourage the adoption of privacy initiatives. Although considerable effort has been devoted to design less “destructive” privacy mechanisms, the utility metrics employed may not be appropriate, thus the wellness of such mechanisms would be incorrectly measured. On the other hand, despite the advent of big data, more efficient approaches are not being considered. Not complying with the requirements of current applications may hinder the adoption of privacy technologies. In the first part of this thesis, we address the problem of measuring the effect of k-anonymous microaggregation on the empirical utility of microdata. We quantify utility accordingly as the accuracy of classification models learned from microaggregated data, evaluated over original test data. Our experiments show that the impact of the de facto microaggregation standard on the performance of machine-learning algorithms is often minor for a variety of data sets. Furthermore, experimental evidence suggests that the traditional measure of distortion in the community of microdata anonymization may be inappropriate for evaluating the utility of microaggregated data. Secondly, we address the problem of preserving the empirical utility of data. By transforming the original data records to a different data space, our approach, based on linear discriminant analysis, enables k-anonymous microaggregation to be adapted to the application domain of data. To do this, first, data is rotated (projected) towards the direction of maximum discrimination and, second, scaled in this direction, penalizing distortion across the classification threshold. As a result, data utility is preserved in terms of the accuracy of machine learned models for a number of standardized data sets. Afterwards, we propose a mechanism to reduce the running time for the k-anonymous microaggregation algorithm. This is obtained by simplifying the internal operations of the original algorithm. Through extensive experimentation over multiple data sets, we show that the new algorithm gets significantly faster. Interestingly, this remarkable speedup factor is achieved with no additional loss of data utility.Les aplicacions de big data impulsen actualment una accelerada innovació aprofitant la gran quantitat d’informació generada a partir de les interaccions dels usuaris amb la tecnologia. Així, qualsevol entitat és capaç d'explotar eficientment les dades per obtenir utilitat, emprant aprenentatge automàtic i capacitats de còmput sense precedents. No obstant això, sorgeixen en aquest escenari serioses preocupacions pel que fa a la privacitat dels usuaris ja que hi ha informació personal involucrada. Tot i que s'han proposat diversos mecanismes de protecció, hi ha alguns reptes per a la seva adopció en la pràctica, és a dir perquè es puguin utilitzar. Per començar, l’impacte real d'aquests mecanismes en la utilitat de les dades no esta clar, raó per la qual la seva avaluació empírica és important. A més, considerant que actualment es manegen grans volums de dades, una privacitat usable requereix, no només preservació de la utilitat de les dades, sinó també algoritmes eficients en temes de temps de còmput. És clau satisfer tots dos requeriments per incentivar l’adopció de mesures de privacitat. Malgrat que hi ha diversos esforços per dissenyar mecanismes de privacitat menys "destructius", les mètriques d'utilitat emprades no serien apropiades, de manera que aquests mecanismes de protecció podrien estar sent incorrectament avaluats. D'altra banda, tot i l’adveniment del big data, la investigació existent no s’enfoca molt en millorar la seva eficiència. Lamentablement, si els requisits de les aplicacions actuals no es satisfan, s’obstaculitzarà l'adopció de tecnologies de privacitat. A la primera part d'aquesta tesi abordem el problema de mesurar l'impacte de la microagregació k-Gnónima en la utilitat empírica de microdades. Per això, quantifiquem la utilitat com la precisió de models de classificació obtinguts a partir de les dades microagregades. i avaluats sobre dades de prova originals. Els experiments mostren que l'impacte de l’algoritme de rmicroagregació estàndard en el rendiment d’algoritmes d'aprenentatge automàtic és usualment menor per a una varietat de conjunts de dades avaluats. A més, l’evidència experimental suggereix que la mètrica tradicional de distorsió de les dades seria inapropiada per avaluar la utilitat empírica de dades microagregades. Així també estudiem el problema de preservar la utilitat empírica de les dades a l'ésser anonimitzades. Transformant els registres originaIs de dades en un espai de dades diferent, el nostre enfocament, basat en anàlisi de discriminant lineal, permet que el procés de microagregació k-anònima s'adapti al domini d’aplicació de les dades. Per això, primer, les dades són rotades o projectades en la direcció de màxima discriminació i, segon, escalades en aquesta direcció, penalitzant la distorsió a través del llindar de classificació. Com a resultat, la utilitat de les dades es preserva en termes de la precisió dels models d'aprenentatge automàtic en diversos conjunts de dades. Posteriorment, proposem un mecanisme per reduir el temps d'execució per a la microagregació k-anònima. Això s'aconsegueix simplificant les operacions internes de l'algoritme escollit Mitjançant una extensa experimentació sobre diversos conjunts de dades, vam mostrar que el nou algoritme és bastant més ràpid. Aquesta acceleració s'aconsegueix sense que hi ha pèrdua en la utilitat de les dades. Finalment, en un enfocament més aplicat, es proposa una eina de protecció de privacitat d'individus i organitzacions mitjançant l'anonimització de dades sensibles inclosos en logs de seguretat. Es dissenyen diferents mecanismes d'anonimat per implementar-los en base a la definició d'una política de privacitat, en el context d'un projecte europeu que té per objectiu construir un sistema de seguretat unificat.Postprint (published version

    Next-generation capabilities in trusted research environments:interview study

    Get PDF
    BACKGROUND: A Trusted Research Environment (TRE; also known as a Safe Haven) is an environment supported by trained staff and agreed processes (principles and standards), providing access to data for research while protecting patient confidentiality. Accessing sensitive data without compromising the privacy and security of the data is a complex process.OBJECTIVE: This paper presents the security measures, administrative procedures, and technical approaches adopted by TREs.METHODS: We contacted 73 TRE operators, 22 (30%) of whom, in the United Kingdom and internationally, agreed to be interviewed remotely under a nondisclosure agreement and to complete a questionnaire about their TRE.RESULTS: We observed many similar processes and standards that TREs follow to adhere to the Seven Safes principles. The security processes and TRE capabilities for supporting observational studies using classical statistical methods were mature, and the requirements were well understood. However, we identified limitations in the security measures and capabilities of TREs to support "next-generation" requirements such as wide ranges of data types, ability to develop artificial intelligence algorithms and software within the environment, handling of big data, and timely import and export of data.CONCLUSIONS: We found a lack of software or other automation tools to support the community and limited knowledge of how to meet the next-generation requirements from the research community. Disclosure control for exporting artificial intelligence algorithms and software was found to be particularly challenging, and there is a clear need for additional controls to support this capability within TREs.</p

    Automatic privacy and utility evaluation of anonymized documents via deep learning

    Get PDF
    Text anonymization methods are evaluated by comparing their outputs with human-based anonymizations through standard information retrieval (IR) metrics. On the one hand, the residual disclosure risk is quantified with the recall metric, which gives the proportion of re-identifying terms successfully detected by the anonymization algorithm. On the other hand, the preserved utility is measured with the precision metric, which accounts the proportion of masked terms that were also annotated by the human experts. Nevertheless, because these evaluation metrics were meant for information retrieval rather than privacy-oriented tasks, they suffer from several drawbacks. First, they assume a unique ground truth, and this does not hold for text anonymization, where several masking choices could be equally valid to prevent re-identification. Second, annotation-based evaluation relies on human judgements, which are inherently subjective and may be prone to errors. Finally, both metrics weight terms uniformly, thereby ignoring the fact that the influence on the disclosure risk or on utility preservation of some terms may be much larger than of others. To overcome these drawbacks, in this thesis we propose two novel methods to evaluate both the disclosure risk and the utility preserved in anonymized texts. Our approach leverages deep learning methods to perform this evaluation automatically, thereby not requiring human annotations. For assessing disclosure risks, we propose using a re-identification attack, which we define as a multi-class classification task built on top of state-of-the art language models. To make it feasible, the attack has been designed to capture the means and computational resources expected to be available at the attacker's end. For utility assessment, we propose a method that measures the information loss incurred during the anonymization process, which relies on a neural masked language modeling. We illustrate the effectiveness of our methods by evaluating the disclosure risk and retained utility of several well-known techniques and tools for text anonymization on a common dataset. Empirical results show significant privacy risks for all of them (including manual anonymization) and consistently proportional utility preservation

    Recent Advances in Wearable Sensing Technologies

    Get PDF
    Wearable sensing technologies are having a worldwide impact on the creation of novel business opportunities and application services that are benefiting the common citizen. By using these technologies, people have transformed the way they live, interact with each other and their surroundings, their daily routines, and how they monitor their health conditions. We review recent advances in the area of wearable sensing technologies, focusing on aspects such as sensor technologies, communication infrastructures, service infrastructures, security, and privacy. We also review the use of consumer wearables during the coronavirus disease 19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we discuss open challenges that must be addressed to further improve the efficacy of wearable sensing systems in the future
    corecore