659 research outputs found

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy

    Quantifying Brain Microstructure with Diffusion MRI: An Assessment of Microscopic Anisotropy Imaging

    Get PDF
    Diffusion-weighted magnetic resonance imaging is routinely used for quantifying microstructural properties of brain tissue in both health and disease for its ability to be sensitive to the displacements of water molecules on a microscopic level. Significant effort has been put into the development of methods that provide more information on tissue microstructure than conventional diffusion tensor imaging. Multidimensional diffusion encoding methods render the signal sensitive to the displacements of water molecules that occur along two or three dimensions and can resolve some degeneracies in data acquired with single diffusion encoding methods that measure diffusion along a single dimension. The aim of this thesis is to study the state-of-the-art microstructural imaging methods and to assess their robustness in estimating microscopic diffusion anisotropy, i.e., the average anisotropy of the microscopic diffusion environments irrespective of their orientation dispersion, prior to their adoption in the wider neuroscience research community and possible deployment in clinical studies. First, a massively parallel Monte Carlo random walk simulator is presented. Second, the reproducibility of three commonly used microstructural models is quantified and the shortcomings of such single diffusion encoding methods in estimating microscopic diffusion anisotropy are addressed. Third, the challenges of estimating microscopic diffusion anisotropy in the human brain using double diffusion encoding are addressed using animal imaging experiments and simulations. The results support the feasibility of double diffusion encoding in human neuroimaging but raise hitherto overlooked precision issues when measuring microscopic diffusion anisotropy. Fourth, the accuracy and precision of microscopic diffusion anisotropy estimation using q-space trajectory encoding, a multidimensional diffusion encoding method specifically developed with the limitations of clinical whole-body scanners in mind, are assessed using imaging experiments and simulations. The results suggest that although broken model assumptions and time-dependent diffusion may bias the estimates, the effect of time-dependent diffusion on the estimated microscopic diffusion anisotropy is small in human white matter

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Development and validation of real-time simulation of X-ray imaging with respiratory motion

    Get PDF
    International audienceWe present a framework that combines evolutionary optimisation, soft tissue modelling and ray tracing on GPU to simultaneously compute the respiratory motion and X-ray imaging in real-time. Our aim is to provide validated building blocks with high fidelity to closely match both the human physiology and the physics of X-rays. A CPU-based set of algorithms is presented to model organ behaviours during respiration. Soft tissue deformation is computed with an extension of the Chain Mail method. Rigid elements move according to kinematic laws. A GPU-based surface rendering method is proposed to compute the X-ray image using the Beer-Lambert law. It is provided as an open-source library. A quantitative validation study is provided to objectively assess the accuracy of both components: i) the respiration against anatomical data, and ii) the X-ray against the Beer-Lambert law and the results of Monte Carlo simulations. Our implementation can be used in various applications, such as interactive medical virtual environment to train percutaneous transhepatic cholangiography in interventional radiology, 2D/3D registration, computation of digitally reconstructed radiograph, simulation of 4D sinograms to test tomography reconstruction tools

    Natural ventilation design attributes application effect on, indoor natural ventilation performance of a double storey, single unit residential building

    Get PDF
    In establishing a good indoor thermal condition, air movement is one of the important parameter to be considered to provide indoor fresh air for occupants. Due to the public awareness on environment impact, people has been increasingly attentive to passive design in achieving good condition of indoor building ventilation. Throughout case studies, significant building attributes were found giving effect on building indoor natural ventilation performance. The studies were categorized under vernacular houses, contemporary houses with vernacular element and contemporary houses. The indoor air movement of every each spaces in the houses were compared with the outdoor air movement surrounding the houses to indicate the space’s indoor natural ventilation performance. Analysis found the wind catcher element appears to be the most significant attribute to contribute most to indoor natural ventilation. Wide opening was also found to be significant especially those with louvers. Whereas it is also interesting to find indoor layout design is also significantly giving impact on the performance. The finding indicates that a good indoor natural ventilation is not only dictated by having proper openings at proper location of a building, but also on how the incoming air movement is managed throughout the interior spaces by proper layout. Understanding on the air pressure distribution caused by indoor windward and leeward side is important in directing the air flow to desired spaces in producing an overall good indoor natural ventilation performance

    Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography

    Full text link
    Photoacoustic tomography is a contrast agent-free imaging technique capable of visualizing blood vessels and tumor-associated vascularization in breast tissue. While sophisticated breast imaging systems have been recently developed, there is yet much to be gained in imaging depth, image quality and tissue characterization capability before clinical translation is possible. In response, we have developed a hybrid photoacoustic and ultrasound-transmission tomographic system PAM3. The photoacoustic component has for the first time three-dimensional multi-wavelength imaging capability, and implements substantial technical advancements in critical hardware and software sub-systems. The ultrasound component enables for the first time, a three-dimensional sound speed map of the breast to be incorporated in photoacoustic reconstruction to correct for inhomogeneities, enabling accurate target recovery. The results demonstrate the deepest photoacoustic breast imaging to date namely 48 mm, with a more uniform field of view than hitherto, and an isotropic spatial resolution that rivals that of Magnetic Resonance Imaging. The in vivo performance achieved, and the diagnostic value of interrogating angiogenesis-driven optical contrast as well as tumor mass sound speed contrast, gives confidence in the system's clinical potential.Comment: 33 pages Main Body, 9 pages Supplementary Materia
    corecore