53 research outputs found

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter

    Medical image registration by neural networks: a regression-based registration approach

    Get PDF
    This thesis focuses on the development and evaluation of a registration-by-regression approach for the 3D/2D registration of coronary Computed Tomography Angiography (CTA) and X-ray angiography. This regression-based method relates image features of 2D projection images to the transformation parameters of the 3D image by a nonlinear regression. It treats registration as a regression problem, as an alternative for the traditional iterative approach that often comes with high computational costs and limited capture range. First we presented a survey of the methods with a regression-based registration approach for medical applications, as well as a summary of their main characteristics (Chapter 2). Second, we studied the registration methodology, addressing the input features and the choice of regression model (Chapter 3 and Chapter 4). For that purpose, we evaluated different options using simulated X-ray images generated from coronary artery tree models derived from 3D CTA scans. We also compared the registration-by-regression results with a method based on iterative optimization. Different image features of 2D projections and seven regression techniques were considered. The regression approach for simulated X-rays was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach. Neural Networks obtained accurate results and showed to be robust to large initial misalignment. Third, we evaluated the registration-by-regression method using clinical data, integrating the 3D preoperative CTA of the coronary arteries with intraoperative 2D X-ray angiography images (Chapter 5). For the evaluation of the image registration, a gold standard registration was established using an exhaustive search followed by a multi-observer visual scoring procedure. The influence of preprocessing options for the simulated images and the real X-rays was studied. Several image features were also compared. The coronary registration–by-regression results were not satisfactory, resembling manual initialization accuracy. Therefore, the proposed method for this concrete problem and in its current configuration is not sufficiently accurate to be used in the clinical practice. The framework developed enables us to better understand the dependency of the proposed method on the differences between simulated and real images. The main difficulty lies in the substantial differences in appearance between the images used for training (simulated X-rays from 3D coronary models) and the actual images obtained during the intervention (real X-ray angiography). We suggest alternative solutions and recommend to evaluate the registration-by-regression approach in other applications where training data is available that has similar appearance to the eventual test data

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    간 ìĄ°ì˜ìˆ ì„ 위한 혈ꎀ ëȘšëž Ʞ반의 ꔭ부 적응 2D-3D 정합 ì•Œêł ëŠŹìŠ˜ êž°ëȕ ì—°ê”Ź

    Get PDF
    í•™ìœ„ë…ŒëŹž (ë°•ì‚Ź)-- 서욞대학ꔐ 대학원 : ì „êž°Â·ì»Ží“ší„°êł”í•™ë¶€, 2017. 2. 신영Ꞟ.Two-dimensional–three-dimensional (2D–3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which make it difficult to obtain the correct solution of 2D–3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34 ± 1.94 mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.Chapter 1 Introduction 1 1.1 Background 1 1.2 Problem statement 6 1.3 Main contributions 8 1.4 Contents organization 10 Chapter 2 Related Works 12 2.1 Overview 12 2.1.1 Definitions 14 2.1.2 Intensity-based and feature-based registration 17 2.2 Neurovascular applications 19 2.3 Liver applications 22 2.4 Cardiac applications 27 2.4.1 Rigid registration 27 2.4.2 Non-rigid registration 31 Chapter 3 3D Vascular Structure Model 33 3.1 Vessel segmentation 34 3.1.1 Overview 34 3.1.2 Vesselness filter 36 3.1.3 Vessel segmentation 39 3.2 Skeleton extraction 40 3.2.1 Overview 40 3.2.2 Skeleton extraction based on fast marching method 41 3.3 Graph construction 45 3.4 Generation of subtree structures from 3D tree model 46 Chapter 4 Locally Adaptive Registration 52 4.1 2D centerline extraction 53 4.1.1 Extraction from a single DSA image 54 4.1.2 Extraction from angiographic image sequence 55 4.2 Coarse registration for the detection of the best matched subtree 58 4.3 Fine registration with selected 3D subtree 61 Chapter 5 Experimental Results 63 5.1 Materials 63 5.2 Phantom study 65 5.3 Performance evaluation 69 5.3.1 Evaluation for a single DSA image 69 5.3.2 Evaluation for angiographic image sequence 75 5.4 Comparison with other methods 77 5.5 Parameter study 87 Chapter 6 Conclusion 90 Bibliography 92 ìŽˆëĄ 109Docto

    Augmented Image-Guidance for Transcatheter Aortic Valve Implantation

    Get PDF
    The introduction of transcatheter aortic valve implantation (TAVI), an innovative stent-based technique for delivery of a bioprosthetic valve, has resulted in a paradigm shift in treatment options for elderly patients with aortic stenosis. While there have been major advancements in valve design and access routes, TAVI still relies largely on single-plane fluoroscopy for intraoperative navigation and guidance, which provides only gross imaging of anatomical structures. Inadequate imaging leading to suboptimal valve positioning contributes to many of the early complications experienced by TAVI patients, including valve embolism, coronary ostia obstruction, paravalvular leak, heart block, and secondary nephrotoxicity from contrast use. A potential method of providing improved image-guidance for TAVI is to combine the information derived from intra-operative fluoroscopy and TEE with pre-operative CT data. This would allow the 3D anatomy of the aortic root to be visualized along with real-time information about valve and prosthesis motion. The combined information can be visualized as a `merged\u27 image where the different imaging modalities are overlaid upon each other, or as an `augmented\u27 image, where the location of key target features identified on one image are displayed on a different imaging modality. This research develops image registration techniques to bring fluoroscopy, TEE, and CT models into a common coordinate frame with an image processing workflow that is compatible with the TAVI procedure. The techniques are designed to be fast enough to allow for real-time image fusion and visualization during the procedure, with an intra-procedural set-up requiring only a few minutes. TEE to fluoroscopy registration was achieved using a single-perspective TEE probe pose estimation technique. The alignment of CT and TEE images was achieved using custom-designed algorithms to extract aortic root contours from XPlane TEE images, and matching the shape of these contours to a CT-derived surface model. Registration accuracy was assessed on porcine and human images by identifying targets (such as guidewires or coronary ostia) on the different imaging modalities and measuring the correspondence of these targets after registration. The merged images demonstrated good visual alignment of aortic root structures, and quantitative assessment measured an accuracy of less than 1.5mm error for TEE-fluoroscopy registration and less than 6mm error for CT-TEE registration. These results suggest that the image processing techniques presented have potential for development into a clinical tool to guide TAVI. Such a tool could potentially reduce TAVI complications, reducing morbidity and mortality and allowing for a safer procedure

    Recalage préservant la topologie des vaisseaux: application à la cardiologie interventionnelle

    Get PDF
    In percutaneous coronary interventions, integrating into the live fluoroscopic image vessel calcifications and occlusion information that are revealed in the pre-operative Computed Tomography Angiography can greatly improve guidance of the clinician. Fusing pre- and intra-operative information into a single space aims at taking advantage of two complementary modalities and requires a step of registration that must provide good alignment and relevant correspondences between them. Most of the existing 3D/2D vessel registration algorithms do not take into account the particular topology of the vasculature to be matched, resulting into pairings that may be topologically inconsistent along the vasculature.A first contribution consisted in a registration framework dedicated to curve matching, denoted the Iterative Closest Curve (ICC). Its main feature is to preserve the topological consistency along curves by taking advantage of the Frechet distance that not only computes the distance between two curves but also builds ordered pairings along them. A second contribution is a pairing procedure designed for the matching of a vascular tree structure that endorses its particular topology and that can easily take advantage of the ICC-framework. Centerlines of the 3D tree are matched to curves extracted from the 2D vascular graph while preserving the connectivity at 3D bifurcations. The matching criterion used to build the pairings takes into account the geometric distance and the resemblance between curves both based on a global formulation using the Frechet distance.To evaluate our approach we run experiments on a database composed of 63 clinical cases, measuring accuracy on real conditions and robustness with respect to a simulated displacement. Quantitative results have been obtained using two complementary measures that aim at assessing the results both geometrically and topologically, and quantify the resulting alignment error as well as the pairing error. The proposed method exhibits good results both in terms of pairing and alignment and demonstrates to be low sensitive to the rotations to be compensated (up to 30 degrees).Cette thĂšse s’inscrit dans le cadre de la cardiologie interventionnelle. IntĂ©grer des informations telles que la position des calcifications ainsi que la taille et forme d’une occlusion dans les images fluoroscopiques constituerait un bĂ©nĂ©fice pour le praticien. Ces informations, invisibles dans les images rayons-X pendant la procĂ©dure, sont prĂ©sentes au sein du scanner CT prĂ©opĂ©ratoire. La fusion de cette modalitĂ© avec la fluoroscopie apporterait une aide prĂ©cieuse au guidage temps rĂ©el des outils interventionnels en bĂ©nĂ©ficiant des informations fournies par le CT. Cette fusion requiert une Ă©tape de recalage qui vise Ă  aligner au mieux les deux modalitĂ©s et fournir des correspondances pertinentes entre elles. La plupart des algorithmes de recalage 3D/2D de vaisseaux rencontrent des difficultĂ©s Ă  construire des appariements anatomiquement pertinents, essentiellement Ă  cause du manque de cohĂ©rence topologique le long du rĂ©seau vasculaire.Afin de rĂ©soudre ce problĂšme, nous proposons dans cette thĂšse un cadre gĂ©nĂ©rique pour le recalage de structures curvilinĂ©aires. L’algorithme qui en dĂ©coule prĂ©serve la structure des courbes appariĂ©es. Les artĂšres coronaires pouvant ĂȘtre reprĂ©sentĂ©es par un ensemble de courbes arrangĂ©es en arbre, nous proposons aussi une procĂ©dure d’appariement qui respecte cette structure. Le recalage d’un arbre 3D sur un graphe 2D est ainsi rĂ©alisĂ© en assurant la prĂ©servation des connectivitĂ©s aux bifurcations. Le choix de l’appariement est basĂ© sur un critĂšre prenant en compte la distance gĂ©omĂ©trique ainsi que la ressemblance entre courbes. Ce critĂšre est Ă©valuĂ© grĂące Ă  une forme modifiĂ©e de la distance de FrĂ©chet.Une base de donnĂ©es de 63 cas cliniques a Ă©tĂ© utilisĂ©e Ă  travers diffĂ©rentes expĂ©riences afin de prouver la robustesse et la prĂ©cision de notre approche. Nous avons proposĂ© deux mesures complĂ©mentaires visant Ă  quantifier la qualitĂ© de l’alignement d’une part et des appariements engendrĂ©s d’autre part. La mĂ©thode proposĂ©e se montre prĂ©cise pour les alignements de la projection du modĂšle CT et des artĂšres coronaires observĂ©es dans les images angiographiques. De plus, les appariements obtenus sont anatomiquement pertinents et lĂĄlgorithme a prouvĂ© sa robustesse face aux perturbations de la position initiale. Nous attribuons cette robustesse Ă  la qualitĂ© des appariements construits au fur et Ă  mesure des itĂ©rations

    Reconstruction of Coronary Arteries from X-ray Rotational Angiography

    Get PDF

    Machine learning-based automated segmentation with a feedback loop for 3D synchrotron micro-CT

    Get PDF
    Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat die Grundlage fĂŒr die Untersuchung der 3D-Struktur opaker Proben mit einer Auflösung im Mikrometerbereich und höher geschaffen. Dies fĂŒhrte zur Entwicklung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaffung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedenster Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer lebender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssysteme und Robotik ermöglichte die vollstĂ€ndige Automatisierung der Röntgenbildgebungsexperimente und die Kalibrierung der Parameter des Versuchsaufbaus wĂ€hrend des Betriebs. Die Weiterentwicklung der digitalen Detektorsysteme fĂŒhrte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Empfindlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen fĂŒhrten zu einer betrĂ€chtlichen Steigerung des Durchsatzes des Bildgebungsprozesses, aber auf der anderen Seite begannen die Experimente eine wesentlich grĂ¶ĂŸere Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschließend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschritte den Weg fĂŒr die DurchfĂŒhrung effizienterer Hochdurchsatzexperimente zur Untersuchung einer großen Anzahl von Proben, welche DatensĂ€tze von besserer QualitĂ€t produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein hoher Bedarf an einem effizienten, automatisierten Workflow fĂŒr die Röntgendatenanalyse, welcher eine solche Datenlast bewĂ€ltigen und wertvolle Erkenntnisse fĂŒr die Fachexperten liefern kann. Die bestehenden Lösungen fĂŒr einen solchen Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie fĂŒr Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden. Daher sind sie nicht fĂŒr Hochdurchsatzdatenströme optimiert und auch nicht in der Lage, die hierarchische Beschaffenheit von Proben zu nutzen. Die wichtigsten BeitrĂ€ge der vorliegenden Arbeit sind ein neuer automatisierter Analyse-Workflow, der fĂŒr die effiziente Verarbeitung heterogener RöntgendatensĂ€tze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperparameter fĂŒr den spezifischen Datensatz zu finden. FĂŒr die Analyse von Faserstrukturen in Proben wurde eine neue, hochgradig parallelisierbare 3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept der emittierenden Strahlen basiert und eine prĂ€zisere morphologische Analyse ermöglicht. Alle entwickelten Methoden wurden grĂŒndlich an synthetischen DatensĂ€tzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungsbedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in der Lage ist, eine Reihe von DatensĂ€tzen Ă€hnlicher Art zu verarbeiten. DarĂŒber hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten Workflows und der Methoden vorgestellt und der Gemeinschaft als Module fĂŒr die Sprache Python zur VerfĂŒgung gestellt. Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich fĂŒr Mikro-CT-DatensĂ€tze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbesondere wurde dieser Arbeitsablauf fĂŒr die Analyse der Medaka-Fisch-DatensĂ€tze angewandt, was eine automatisierte Segmentierung und anschließende morphologische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. DarĂŒber hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der morphologischen Analyse von PolymergerĂŒst-DatensĂ€tzen eingesetzt, um einen Herstellungsprozess in Richtung wĂŒnschenswerter Eigenschaften zu lenken
    • 

    corecore