2,712 research outputs found

    Smart grid architecture for rural distribution networks: application to a Spanish pilot network

    Get PDF
    This paper presents a novel architecture for rural distribution grids. This architecture is designed to modernize traditional rural networks into new Smart Grid ones. The architecture tackles innovation actions on both the power plane and the management plane of the system. In the power plane, the architecture focuses on exploiting the synergies between telecommunications and innovative technologies based on power electronics managing low scale electrical storage. In the management plane, a decentralized management system is proposed based on the addition of two new agents assisting the typical Supervisory Control And Data Acquisition (SCADA) system of distribution system operators. Altogether, the proposed architecture enables operators to use more effectively—in an automated and decentralized way—weak rural distribution systems, increasing the capability to integrate new distributed energy resources. This architecture is being implemented in a real Pilot Network located in Spain, in the frame of the European Smart Rural Grid project. The paper also includes a study case showing one of the potentialities of one of the principal technologies developed in the project and underpinning the realization of the new architecture: the so-called Intelligent Distribution Power Router.Postprint (published version

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    A High-confidence Cyber-Physical Alarm System: Design and Implementation

    Full text link
    Most traditional alarm systems cannot address security threats in a satisfactory manner. To alleviate this problem, we developed a high-confidence cyber-physical alarm system (CPAS), a new kind of alarm systems. This system establishes the connection of the Internet (i.e. TCP/IP) through GPRS/CDMA/3G. It achieves mutual communication control among terminal equipments, human machine interfaces and users by using the existing mobile communication network. The CPAS will enable the transformation in alarm mode from traditional one-way alarm to two-way alarm. The system has been successfully applied in practice. The results show that the CPAS could avoid false alarms and satisfy residents' security needs.Comment: IEEE/ACM Internet of Things Symposium (IOTS), in conjunction with GreenCom 2010, IEEE, Hangzhou, China, December 18-20, 201

    Design and realization of the vehicle-mounted unit for a remote electronic monitoring and calibration system

    Get PDF
    Author name used in this publication: K. W. E. ChengVersion of RecordPublishe

    AN AUTOMATED ENERGY METER READING SYSTEM USING GSM TECHNOLOGY

    Get PDF
    The measurement of the energy consumed by residential and commercial buildings by utility provider is important in billing, control and monitoring of the usage of energy. Traditional metering techniques used for the measurement of energy are not convenient and is prone to different forms of irregularities. These irregularities include inaccuracies in billing due to human error, energy theft, loss of revenue due to corruption and so on. This research study proposed the design and construction of a microcontroller based electric energy metering system using the Global System for Mobile communication (GSM) network. This system provides solution to the irregularities posed by the traditional metering technique by allowing the utility provider have access to remote monitoring capabilities, full control over consumer load, and remote power disconnection in the case of energy theft. Proteus simulation software was used to model the system hardware and the software was obtained by using embedded C programming and visual basic. It was observed that the system could remotely take accurate energy readings, provided full control over consumer loads and execute remote disconnection in case of energy theft. The system provides high performance and high accuracy in power monitoring and power management. Keywords: GSM, Automati

    Wind Turbine Fault Detection System in Real Time Remote Monitoring

    Get PDF
    In new energy development, wind power has boomed. It is due to theproliferation of wind parks and their operation in supplying the nationalelectric grid with low cost and clean resources. Hence, there is an increasedneed to establish a proactive maintenance for wind turbine machines based on remote control and monitoring. That is necessary with a real-time wireless connection in offshore or inaccessible locations while the wired method has many flaws. The objective of this strategy is to prolong wind turbine lifetime and to increase productivity. The hardware of a remote control and monitoring system for wind turbine parks is designed. It takes advantage of GPRS or Wi-Max wireless module to collect data measurements from different wind machine sensors through IP based multi-hop communication. Computer simulations with Proteus ISIS and OPNET software tools have been conducted to evaluate the performance of the studied system. Study findings show that the designed device is suitable for application in a wind park.DOI:http://dx.doi.org/10.11591/ijece.v4i6.647

    Knowledge Discovery in the SCADA Databases Used for the Municipal Power Supply System

    Full text link
    This scientific paper delves into the problems related to the develop-ment of intellectual data analysis system that could support decision making to manage municipal power supply services. The management problems of mu-nicipal power supply system have been specified taking into consideration modern tendencies shown by new technologies that allow for an increase in the energy efficiency. The analysis findings of the system problems related to the integrated computer-aided control of the power supply for the city have been given. The consideration was given to the hierarchy-level management decom-position model. The objective task targeted at an increase in the energy effi-ciency to minimize expenditures and energy losses during the generation and transportation of energy carriers to the Consumer, the optimization of power consumption at the prescribed level of the reliability of pipelines and networks and the satisfaction of Consumers has been defined. To optimize the support of the decision making a new approach to the monitoring of engineering systems and technological processes related to the energy consumption and transporta-tion using the technologies of geospatial analysis and Knowledge Discovery in databases (KDD) has been proposed. The data acquisition for analytical prob-lems is realized in the wireless heterogeneous medium, which includes soft-touch VPN segments of ZigBee technology realizing the 6LoWPAN standard over the IEEE 802.15.4 standard and also the segments of the networks of cellu-lar communications. JBoss Application Server is used as a server-based plat-form for the operation of the tools used for the retrieval of data collected from sensor nodes, PLC and energy consumption record devices. The KDD tools are developed using Java Enterprise Edition platform and Spring and ORM Hiber-nate technologies

    On possibilities of smart meters switching at low voltage level for emergency grid management

    Get PDF
    Smart Meter (SM) is an advanced remotely readable energy meter with two-way communication capability which measures the electrical energy in real-time or near-real-time and securely sends data to Distribution System Operator (DSO). A smart metering system is an application of SMs on a larger scale, i.e. the application of a general principle on a system rather than on individual appliance. The European Commission (EC) has included ten common minimum functional requirements for electricity smart metering systems. One functionality requirement among these functional requirements is that the SM should allow remote ON/OFF switch to control the supply. Some DSOs who have installed remote ON/OFF switch are currently applying this technique for customers typically one by one when customers are changing addresses, or when contracts are terminated, or have defaulted on their payments. The switching functionalities of the SMs could be used for multiple customers, thereby opening up new possibilities for emergency electrical grid management by excluding prioritized customers. There is an interest to investigate if the multiple SMs switching might have some impacts on the Power Quality (PQ) of the electrical grid and also the challenges in implementing this technique on the existing smart metering system during emergency situation. In this thesis work, three field tests have been performed on multiple SMs switching focusing on the impact of the SMs switching on the PQ of the grid. A risk analysis was carried out before conducting the field tests. The PQ measurements were done by Power Quality Meters (PQMs) during the multiple SMs switching. Voltage variations and PQ events were recorded in the PQMs. Waveform data of the PQ events were recorded at 12.8 kHz sampling frequency. The test results are then evaluated based on PQ standards. Moreover, performance of the existing smart metering system was investigated during the multiple SMs switching to identify the challenges and possibilities of using multiple SMs switching. The analysis of the test results show that there were no other PQ events or voltage variations except some transient events which were recorded at some customer level during the reconnection of the SMs. However, the duration of the transient events was only fractions of a millisecond and deviation of the voltage transients were below +/-50% except for few transient events which have deviations of more than +/- 50% but less than +/-60%. This type of transient events may not be able to create damage to sensitive customers’ loads. The multiple SMs switching may not have impact on the PQ if the number of customers is low. However, SMs switching for large number of customers might have impact on the PQ which needs to be investigated. Moreover, the performance of the existing smart metering system during multiple SMs switching shows some limitations on implementing the switching technique for large scale of customers. The identified limitations are e.g., long time requirement for SMs switching and errors in the real-time status update report during SMs switching. Furthermore, the findings show that more research is needed to identify required functions for future smart metering system to implement multiple SMs switching during emergency grid management

    Remote online machine condition monitoring using advanced internet, wireless and mobile communication technologies

    Get PDF
    A conceptual model with wireless and mobile techniques is developed in this thesis for remote real-time condition monitoring, which is applied for monitoring, diagnosing, and controlling the working conditions of machines. The model has the following major functions: data acquisition, data processing, decision making, and remote communication. The data acquisition module is built up within this model using the sensory technique and data I/O interfaces to acquire the working conditions data of a machine and extract the physical information about the machine (e.g. failure, wear, etc.) for data processing and decision making. The data processing is conducted using digital conversion and feature extraction to process the received analogue condition data and convert the data into the physical quantities of working condition of the machine for sequent fault diagnosis. A real-time fault diagnostic scheme for decision-making is applied based on digital filtering and pattern classification to real-time identify the fault symptom of the machine and provide advice for decision making for maintenance. Process control is implemented to control the operation status of the machine automatically, inform the maintenance personnel diagnostic results and alert the working conditions of the machine. Remote communication with wireless and mobile features greatly advance the machine’s condition monitoring technology with real-time fault diagnostic capacity, by providing a wireless-based platform to enable the implementation of data acquisition, real-time fault diagnosis, and decision making through the Internet, wireless, and mobile phone network. The model integrating above techniques and methods has been applied into the following three areas: (1) Development of a Remote Real-time Condition Monitoring System of Industrial Gearbox, supported by the Stimulation Innovation Success programme (2007-2008); (2) Development of a Remote Control System of Solid Desiccant Dehumidifier for Air Conditioning in Low Carbon Emission Buildings, supported by the Sustainable Construction iNET programme (2009-2010); (3) Development of an Innovative Remote Monitoring System of Thermo-Electric-Generations, supported by the Sustainable Construction iNET programme (2010-2011). The combination of wireless and mobile techniques with data acquisition, real-time fault diagnosis, and decision-making, into a model for remote real-time condition monitoring is a novel contribution to this area

    Implementation of AMI Systems in CFE-Distribution, Mexico

    Get PDF
    The Smart Grid concept has been conceived as the integration of the electrical grid (generation, transmission and distribution) and the communications network of an electric utility. Although, traditional communications interfaces, protocols and standards has been used in the electrical grid in an isolated manner, modern communications networks are considered as the fundamental enabling technologies within a Smart Grid environment. Emerging communications technologies, protocol architectures and standards can help to build a common communications network infrastructure for data transport between customer premises, power substations, power distribution systems, utility control centers and utility data centers. The Smart Grid will support traditional applications such as supervisory control and data acquisition (SCADA), distribution automation (DA), energy management systems (EMS), demand site management (DSM) and automated meter reading (AMR), etc., as well as new applications like advanced metering infrastructure (AMI), substation automation (SA), microgrids, distributed generation (DG), grid monitoring and control, data storage and analysis, among others. To make this possible, the Smart Grid requires a two-way wide area communications network between different dispersed areas, from generation to consumer premises. An AMI system uses communication technologies for smart meter reading several times a day to get data consumption of electricity, as well as sending outage alarm information and meter tampering almost in real time, from the meter to the control center. Currently, there are various communication technologies to implement AMI systems. This paper presents an overview of the most relevant communications technologies that can be used to implement AMI communications infrastructure such as neighborhood area networks (NAN), field area networks (FAN) and wide area networks (WAN) using different transmission media such as fiber optics, spread spectrum radio frequency, microwave, WiMax, Wi-Fi, ZigBee, cellular, and power line carrier. In addition, a review of the current state of various AMI projects around the world, including the progress in the implementation of AMI systems in Mexico, besides the evaluation performance of CFE´s AMI networks
    corecore