1,138 research outputs found

    Improving GPGPU Energy-Efficiency through Concurrent Kernel Execution and DVFS

    Get PDF
    Master'sMASTER OF SCIENC

    Memory Subsystem Optimization Techniques for Modern High-Performance General-Purpose Processors

    Get PDF
    abstract: General-purpose processors propel the advances and innovations that are the subject of humanity’s many endeavors. Catering to this demand, chip-multiprocessors (CMPs) and general-purpose graphics processing units (GPGPUs) have seen many high-performance innovations in their architectures. With these advances, the memory subsystem has become the performance- and energy-limiting aspect of CMPs and GPGPUs alike. This dissertation identifies and mitigates the key performance and energy-efficiency bottlenecks in the memory subsystem of general-purpose processors via novel, practical, microarchitecture and system-architecture solutions. Addressing the important Last Level Cache (LLC) management problem in CMPs, I observe that LLC management decisions made in isolation, as in prior proposals, often lead to sub-optimal system performance. I demonstrate that in order to maximize system performance, it is essential to manage the LLCs while being cognizant of its interaction with the system main memory. I propose ReMAP, which reduces the net memory access cost by evicting cache lines that either have no reuse, or have low memory access cost. ReMAP improves the performance of the CMP system by as much as 13%, and by an average of 6.5%. Rather than the LLC, the L1 data cache has a pronounced impact on GPGPU performance by acting as the bandwidth filter for the rest of the memory subsystem. Prior work has shown that the severely constrained data cache capacity in GPGPUs leads to sub-optimal performance. In this thesis, I propose two novel techniques that address the GPGPU data cache capacity problem. I propose ID-Cache that performs effective cache bypassing and cache line size selection to improve cache capacity utilization. Next, I propose LATTE-CC that considers the GPU’s latency tolerance feature and adaptively compresses the data stored in the data cache, thereby increasing its effective capacity. ID-Cache and LATTE-CC are shown to achieve 71% and 19.2% speedup, respectively, over a wide variety of GPGPU applications. Complementing the aforementioned microarchitecture techniques, I identify the need for system architecture innovations to sustain performance scalability of GPG- PUs in the face of slowing Moore’s Law. I propose a novel GPU architecture called the Multi-Chip-Module GPU (MCM-GPU) that integrates multiple GPU modules to form a single logical GPU. With intelligent memory subsystem optimizations tailored for MCM-GPUs, it can achieve within 7% of the performance of a similar but hypothetical monolithic die GPU. Taking a step further, I present an in-depth study of the energy-efficiency characteristics of future MCM-GPUs. I demonstrate that the inherent non-uniform memory access side-effects form the key energy-efficiency bottleneck in the future. In summary, this thesis offers key insights into the performance and energy-efficiency bottlenecks in CMPs and GPGPUs, which can guide future architects towards developing high-performance and energy-efficient general-purpose processors.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    EXPLORING MULTIPLE LEVELS OF PERFORMANCE MODELING FOR HETEROGENEOUS SYSTEMS

    Get PDF
    The current trend in High-Performance Computing (HPC) is to extract concurrency from clusters that include heterogeneous resources such as General Purpose Graphical Processing Units (GPGPUs) and Field Programmable Gate Array (FPGAs). Although these heterogeneous systems can provide substantial performance for massively parallel applications, much of the available computing resources are often under-utilized due to inefficient application mapping, load balancing, and tuning. While several performance prediction models exist to efficiently tune applications, they often require significant computing architecture knowledge for reliable prediction. In addition, they do not address multiple levels of design space abstraction and it is often difficult to choose a reliable prediction model for a given design. In this research, we develop a multi-level suite of performance prediction models for heterogeneous systems that primarily targets Synchronous Iterative Algorithms (SIAs). The modeling suite aims to produce accurate and straightforward application runtime prediction prior to the actual large-scale implementation. This suite addresses two levels of system abstraction: 1) low-level where partial knowledge of the application implementation is present along with the system specifications and 2) high-level where the implementation details are minimum and only high-level computing system specifications are given. The performance prediction modeling suite is developed using our proposed Synchronous Iterative GPGPU Execution (SIGE) model for GPGPU clusters, motivated by the RC Amenability Test for Scalable Systems (RATSS) model for FPGA clusters. The low-level abstraction for GPGPU clusters consists of a regression-based performance prediction framework that statistically abstracts system architecture characteristics, enabling performance prediction without detailed architecture knowledge. In this framework, the overall execution time of an application is predicted using regression models developed for host-device computations and network-level communications performed in the algorithm. We have used a family of Spiking Neural Network (SNN) models and an Anisotropic Diffusion Filter (ADF) algorithm as SIA case studies for verification of the regression-based framework and achieved over 90% prediction accuracy compared to the actual implementations for several GPGPU cluster configurations tested. The results establish the adequacy of the low-level abstraction model for advanced, fine-grained performance prediction and design space exploration (DSE). The high-level abstraction consists of the following two primary modeling approaches: qualitative modeling that uses existing subjective-analytical models for computation and communication; and quantitative modeling that predicts computation and communication performance by measuring hardware events associated with objective-analytical models using micro-benchmarks. The performance prediction provided by the high-level abstraction approaches, albeit coarse-grained, delivers useful insight into application performance on the chosen heterogeneous system. A blend of the two high-level modeling approaches, labeled as hybrid modeling, is explored for insightful preliminary performance prediction. The performance prediction models in the multi-level suite are verified and compared for their accuracy and ease-of-use, allowing developers to choose a model that best satisfies their design space abstraction. We also construct a roadmap that guides user from optimal Application-to-Accelerator (A2A) mapping to fine-grained performance prediction, thereby providing a hierarchical approach to optimal application porting on the target heterogeneous system. The end goal of this dissertation research is to offer the HPC community a thorough, non-architecture specific, performance prediction framework in the form of a hierarchical modeling suite that enables them to optimally utilize the heterogeneous resources

    Characterization of Speech Recognition Systems on GPU Architectures

    Get PDF
    This master thesis characterizes the performance and energy bottlenecks of speech recognition systems when running on modern GPU, with the aim of providing useful information for designing future GPU architectures, as well as proposing a GPU configuration more well-suited for speech recognition

    Improving GPGPU energy-efficiency through concurrent kernel execution and DVFS

    Full text link

    How a single chip causes massive power bills : GPUSimPow: A GPGPU power simulator

    Get PDF
    Modern GPUs are true power houses in every meaning of the word: While they offer general-purpose (GPGPU) compute performance an order of magnitude higher than that of conventional CPUs, they have also been rapidly approaching the infamous “power wall”, as a single chip sometimes consumes more than 300W. Thus, the design space of GPGPU microarchitecture has been extended by another dimension: power. While GPU researchers have previously relied on cycle-accurate simulators for estimating performance during design cycles, there are no simulation tools that include power as well. To mitigate this issue, we introduce the GPUSimPow power estimation framework for GPGPUs consisting of both analytical and empirical models for regular and irregular hardware components. To validate this framework, we build a custom measurement setup to obtain power numbers from real graphics cards. An evaluation on a set of well-known benchmarks reveals an average relative error of 11.7% between simulated and hardware power for GT240 and an average relative error of 10.8% for GTX580. The simulator has been made available to the public [1].EC/FP7/288653/EU/Low-Power Parallel Computing on GPUs/LPGP
    corecore