6 research outputs found

    Report on IOCCG Workshop Phytoplankton Composition from Space: towards a validation\ud strategy for satellite algorithms

    Get PDF
    The IOCCG-supported workshop “Phytoplankton Composition from Space: towards a validation strategy for satellite algorithms” was organized as a follow-up to the Phytoplankton Functional Types from Space splinter session, held at the International Ocean Colour Science Meeting (Germany, 2013). The specific goals of the workshop were to: 1. Provide a summary of the status of activities from relevant IOCCG working groups, the 2nd PFT intercomparison working group, PFT validation data sets and other research developments. 2. Provide a PFT validation strategy that considers the different applications of PFT products: and seeks community consensus on datasets and analysis protocols. 3. Discuss possibilities for sustaining ongoing PFT algorithm validation and intercomparison activities. The workshop included 15 talks, breakout sessions and plenary discussions. Talks covered community algorithm intercomparison activity updates, review of established and novel methods for PFT validation, validation activities for specific applications and space-agency requirements for PFT products and validation. These were followed by general discussions on (a) major recommendations for global intercomparison initiative in respect to validation, intercomparison and user’s guide; (b) developing a community consensus on which data sets for validation are optimal and which measurement and analysis protocols should be followed to support sustained validation of PFT products considering different applications; (c) the status of different validation data bases and measurement protocols for different PFT applications, and (d) engagement of the various user communities for PFT algorithms in developing PFT product specifications. From these discussions, two breakout groups provided in depth discussion and recommendations on (1) validation of current algorithms and (2) work plan to prepare for validation of future missions. Breakout group 1 provided an action list for progressing the current international community validation and intercomparison activity. Breakout group 2 provided the following recommendations towards developing a future validation strategy for satellite PFT products: 1. Establish a number of validation sites that maintain measurements of a key set of variables. 2. This set of variables should include: • Phytoplankton pigments from HPLC, phycobilins from spectrofluorometry • Phytoplankton cell counts and ID, volume / carbon estimation and imaging (e.g. from flow cytometry, FlowCam, FlowCytobot type technologies) • Inherent optical properties (e.g. absorption, backscattering, VSF) • Hyperspectral radiometry (both above and in-water) • Particle size distribution • Size-fractionated measurements of pigments and absorption • Genetic / -omics data 3. Undertake an intercomparison of methods / instruments over several years at a few sites to understand our capabilities to fully characterize the phytoplankton community. 4. Organise workshops to address the following topics: • Techniques for particle analysis, characterization and classification • Engagement with modellers and understanding end-user requirements • Data storage and management, standards for data contributors, data challenges In conclusion, the workshop was assessed to have fulfilled its goals. A follow-on meeting will be organized during the International Ocean Colour Science Meeting 2015 in San Francisco. Specific follow-on actions are listed at the end of the report

    Microalgae: Current Research and Applications

    Get PDF

    GOES Imager Shows Diurnal Changes of a Trichodesmium erythraeum Bloom on the West Florida Shelf

    No full text
    The advantages of geostationary observations of sediment plumes and phytoplankton blooms have been reported for coastal waters in the southern North Sea and west Pacific. So far, similar observations have not been possible for the Gulf of Mexico where blooms of Trichodesmium erythraeum often occur. Here, using data collected by the Geostationary Operational Environmental Satellite (GOES) Imager, we document diurnal changes of a Trichodesmium bloom first identified by the Moderate Resolution Imaging Spectroradiometer (MODIS). Despite the low-signal-to-noise ratio ( ~ 46 : 1 for typical ocean radiance), the 550-750-nm band revealed clear patterns of Trichodesmium mats floating on the ocean surface and their temporal changes between 14:15 and 22:30 GMT on May 22, 2004. Normalization of the delineated bloom against the ocean background provided an effective atmospheric correction that enabled quantification of the changes in bloom size (i.e., area) and bloom intensity over the course of a day. The area coverage increased by about eightfold from midmorning (14-15 GMT) to reach its maximum around 18:30 GMT, whereas the mean intensity of the bloom area increased by ~ 22% from midmorning to 17:30 GMT. In the afternoon, while the bloom area remained relatively stable on the water surface, bloom intensity sharply decreased. These temporal patterns may be caused by physical aggregation and/or vertical migration of the Trichodesmium cells, and they agree well with the diurnal changes of a harmful algal bloom of the dinoflagellate Prorocentrum donghaiense in the East China Sea observed by the Geostationary Ocean Color Imager

    Remote sensing and bio-geo-optical properties of turbid, productive inland waters: a case study of Lake Balaton

    Get PDF
    Algal blooms plague freshwaters across the globe, as increased nutrient loads lead to eutrophication of inland waters and the presence of potentially harmful cyanobacteria. In this context, remote sensing is a valuable approach to monitor water quality over broad temporal and spatial scales. However, there remain several challenges to the accurate retrieval of water quality parameters, and the research in this thesis investigates these in an optically complex lake (Lake Balaton, Hungary). This study found that bulk and specific inherent optical properties [(S)IOPs] showed significant spatial variability over the trophic gradient in Lake Balaton. The relationships between (S)IOPs and biogeochemical parameters differed from those reported in ocean and coastal waters due to the high proportion of particulate inorganic matter (PIM). Furthermore, wind-driven resuspension of mineral sediments attributed a high proportion of total attenuation to particulate scattering and increased the mean refractive index (n̅p) of the particle assemblage. Phytoplankton pigment concentrations [chlorophyll-a (Chl-a) and phycocyanin (PC)] were also accurately retrieved from a times series of satellite data over Lake Balaton using semi-analytical algorithms. Conincident (S)IOP data allowed for investigation of the errors within these algorithms, indicating overestimation of phytoplankton absorption [aph(665)] and underestimation of the Chl-a specific absorption coefficient [a*ph(665)]. Finally, Chl-a concentrations were accurately retrieved in a multiscale remote sensing study using the Normalized Difference Chlorophyll Index (NDCI), indicating hyperspectral data is not necessary to retrieve accurate pigment concentrations but does capture the subtle heterogeneity of phytoplankton spatial distribution. The results of this thesis provide a positive outlook for the future of inland water remote sensing, particularly in light of contemporary satellite instruments with continued or improved radiometric, spectral, spatial and temporal coverage. Furthermore, the value of coincident (S)IOP data is highlighted and contributes towards the improvement of remote sensing pigment retrieval in optically complex waters
    corecore