23 research outputs found

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a Îș\kappa-conditioned problem in O(Îș)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(Îș1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(Îș)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT

    Accelerating ADMM for efficient simulation and optimization

    Get PDF
    The alternating direction method of multipliers (ADMM) is a popular approach for solving optimization problems that are potentially non-smooth and with hard constraints. It has been applied to various computer graphics applications, including physical simulation, geometry processing, and image processing. However, ADMM can take a long time to converge to a solution of high accuracy. Moreover, many computer graphics tasks involve non-convex optimization, and there is often no convergence guarantee for ADMM on such problems since it was originally designed for convex optimization. In this paper, we propose a method to speed up ADMM using Anderson acceleration, an established technique for accelerating fixed-point iterations. We show that in the general case, ADMM is a fixed-point iteration of the second primal variable and the dual variable, and Anderson acceleration can be directly applied. Additionally, when the problem has a separable target function and satisfies certain conditions, ADMM becomes a fixed-point iteration of only one variable, which further reduces the computational overhead of Anderson acceleration. Moreover, we analyze a particular non-convex problem structure that is common in computer graphics, and prove the convergence of ADMM on such problems under mild assumptions. We apply our acceleration technique on a variety of optimization problems in computer graphics, with notable improvement on their convergence speed

    Solving variational inequalities and cone complementarity problems in nonsmooth dynamics using the alternating direction method of multipliers

    Get PDF
    This work presents a numerical method for the solution of variational inequalities arising in nonsmooth flexible multibody problems that involve set-valued forces. For the special case of hard frictional contacts, the method solves a second order cone complementarity problem. We ground our algorithm on the Alternating Direction Method of Multipliers (ADMM), an efficient and robust optimization method that draws on few computational primitives. In order to improve computational performance, we reformulated the original ADMM scheme in order to exploit the sparsity of constraint jacobians and we added optimizations such as warm starting and adaptive step scaling. The proposed method can be used in scenarios that pose major difficulties to other methods available in literature for complementarity in contact dynamics, namely when using very stiff finite elements and when simulating articulated mechanisms with odd mass ratios. The method can have applications in the fields of robotics, vehicle dynamics, virtual reality, and multiphysics simulation in general

    ADMM in Krylov Subspace and Its Application to Total Variation Restoration of Spatially Variant Blur

    Get PDF
    In this paper we propose an efficient method for a convex optimization problem which involves a large nonsymmetric and non-Toeplitz matrix. The proposed method is an instantiation of the alternating direction method of multipliers applied in Krylov subspace. Our method offers significant advantages in computational speed for the convex optimization problems involved with general matrices of large size. We apply the proposed method to the restoration of spatially variant blur. The matrix representing spatially variant blur is not block circulant with circulant blocks (BCCB). Efficient implementation based on diagonalization of BCCB matrices by the discrete Fourier transform is not applicable for spatially variant blur. Since the proposed method can efficiently work with general matrices, the restoration of spatially variant blur is a good application of our method. Experimental results for total variation restoration of spatially variant blur show that the proposed method provides meaningful solutions in a short time.clos
    corecore