105 research outputs found

    Speech data analysis for semantic indexing of video of simulated medical crises.

    Get PDF
    The Simulation for Pediatric Assessment, Resuscitation, and Communication (SPARC) group within the Department of Pediatrics at the University of Louisville, was established to enhance the care of children by using simulation based educational methodologies to improve patient safety and strengthen clinician-patient interactions. After each simulation session, the physician must manually review and annotate the recordings and then debrief the trainees. The physician responsible for the simulation has recorded 100s of videos, and is seeking solutions that can automate the process. This dissertation introduces our developed system for efficient segmentation and semantic indexing of videos of medical simulations using machine learning methods. It provides the physician with automated tools to review important sections of the simulation by identifying who spoke, when and what was his/her emotion. Only audio information is extracted and analyzed because the quality of the image recording is low and the visual environment is static for most parts. Our proposed system includes four main components: preprocessing, speaker segmentation, speaker identification, and emotion recognition. The preprocessing consists of first extracting the audio component from the video recording. Then, extracting various low-level audio features to detect and remove silence segments. We investigate and compare two different approaches for this task. The first one is threshold-based and the second one is classification-based. The second main component of the proposed system consists of detecting speaker changing points for the purpose of segmenting the audio stream. We propose two fusion methods for this task. The speaker identification and emotion recognition components of our system are designed to provide users the capability to browse the video and retrieve shots that identify ”who spoke, when, and the speaker’s emotion” for further analysis. For this component, we propose two feature representation methods that map audio segments of arbitary length to a feature vector with fixed dimensions. The first one is based on soft bag-of-word (BoW) feature representations. In particular, we define three types of BoW that are based on crisp, fuzzy, and possibilistic voting. The second feature representation is a generalization of the BoW and is based on Fisher Vector (FV). FV uses the Fisher Kernel principle and combines the benefits of generative and discriminative approaches. The proposed feature representations are used within two learning frameworks. The first one is supervised learning and assumes that a large collection of labeled training data is available. Within this framework, we use standard classifiers including K-nearest neighbor (K-NN), support vector machine (SVM), and Naive Bayes. The second framework is based on semi-supervised learning where only a limited amount of labeled training samples are available. We use an approach that is based on label propagation. Our proposed algorithms were evaluated using 15 medical simulation sessions. The results were analyzed and compared to those obtained using state-of-the-art algorithms. We show that our proposed speech segmentation fusion algorithms and feature mappings outperform existing methods. We also integrated all proposed algorithms and developed a GUI prototype system for subjective evaluation. This prototype processes medical simulation video and provides the user with a visual summary of the different speech segments. It also allows the user to browse videos and retrieve scenes that provide answers to semantic queries such as: who spoke and when; who interrupted who? and what was the emotion of the speaker? The GUI prototype can also provide summary statistics of each simulation video. Examples include: for how long did each person spoke? What is the longest uninterrupted speech segment? Is there an unusual large number of pauses within the speech segment of a given speaker

    Anchor model fusion for emotion recognition in speech

    Full text link
    Proceedings of Joint COST 2101 and 2102 International Conference, BioID_MultiComm 2009, Madrid (Spain)The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04391-8_7In this work, a novel method for system fusion in emotion recognition for speech is presented. The proposed approach, namely Anchor Model Fusion (AMF), exploits the characteristic behaviour of the scores of a speech utterance among different emotion models, by a mapping to a back-end anchor-model feature space followed by a SVM classifier. Experiments are presented in three different databases: Ahumada III, with speech obtained from real forensic cases; and SUSAS Actual and SUSAS Simulated. Results comparing AMF with a simple sum-fusion scheme after normalization show a significant performance improvement of the proposed technique for two of the three experimental set-ups, without degrading performance in the third one.This work has been financed under project TEC2006-13170-C02-01

    High level speaker specific features modeling in automatic speaker recognition system

    Get PDF
    Spoken words convey several levels of information. At the primary level, the speech conveys words or spoken messages, but at the secondary level, the speech also reveals information about the speakers. This work is based on the high-level speaker-specific features on statistical speaker modeling techniques that express the characteristic sound of the human voice. Using Hidden Markov model (HMM), Gaussian mixture model (GMM), and Linear Discriminant Analysis (LDA) models build Automatic Speaker Recognition (ASR) system that are computational inexpensive can recognize speakers regardless of what is said. The performance of the ASR system is evaluated for clear speech to a wide range of speech quality using a standard TIMIT speech corpus. The ASR efficiency of HMM, GMM, and LDA based modeling technique are 98.8%, 99.1%, and 98.6% and Equal Error Rate (EER) is 4.5%, 4.4% and 4.55% respectively. The EER improvement of GMM modeling technique based ASR systemcompared with HMM and LDA is 4.25% and 8.51% respectively

    Class-Level Spectral Features for Emotion Recognition

    Get PDF
    The most common approaches to automatic emotion recognition rely on utterance-level prosodic features. Recent studies have shown that utterance-level statistics of segmental spectral features also contain rich information about expressivity and emotion. In our work we introduce a more fine-grained yet robust set of spectral features: statistics of Mel-Frequency Cepstral Coefficients computed over three phoneme type classes of interest – stressed vowels, unstressed vowels and consonants in the utterance. We investigate performance of our features in the task of speaker-independent emotion recognition using two publicly available datasets. Our experimental results clearly indicate that indeed both the richer set of spectral features and the differentiation between phoneme type classes are beneficial for the task. Classification accuracies are consistently higher for our features compared to prosodic or utterance-level spectral features. Combination of our phoneme class features with prosodic features leads to even further improvement. Given the large number of class-level spectral features, we expected feature selection will improve results even further, but none of several selection methods led to clear gains. Further analyses reveal that spectral features computed from consonant regions of the utterance contain more information about emotion than either stressed or unstressed vowel features. We also explore how emotion recognition accuracy depends on utterance length. We show that, while there is no significant dependence for utterance-level prosodic features, accuracy of emotion recognition using class-level spectral features increases with the utterance length

    Emotion Recognition from Speech with Acoustic, Non-Linear and Wavelet-based Features Extracted in Different Acoustic Conditions

    Get PDF
    ABSTRACT: In the last years, there has a great progress in automatic speech recognition. The challenge now it is not only recognize the semantic content in the speech but also the called "paralinguistic" aspects of the speech, including the emotions, and the personality of the speaker. This research work aims in the development of a methodology for the automatic emotion recognition from speech signals in non-controlled noise conditions. For that purpose, different sets of acoustic, non-linear, and wavelet based features are used to characterize emotions in different databases created for such purpose

    A Framework For Enhancing Speaker Age And Gender Classification By Using A New Feature Set And Deep Neural Network Architectures

    Get PDF
    Speaker age and gender classification is one of the most challenging problems in speech processing. Recently with developing technologies, identifying a speaker age and gender has become a necessity for speaker verification and identification systems such as identifying suspects in criminal cases, improving human-machine interaction, and adapting music for awaiting people queue. Although many studies have been carried out focusing on feature extraction and classifier design for improvement, classification accuracies are still not satisfactory. The key issue in identifying speaker’s age and gender is to generate robust features and to design an in-depth classifier. Age and gender information is concealed in speaker’s speech, which is liable for many factors such as, background noise, speech contents, and phonetic divergences. In this work, different methods are proposed to enhance the speaker age and gender classification based on the deep neural networks (DNNs) as a feature extractor and classifier. First, a model for generating new features from a DNN is proposed. The proposed method uses the Hidden Markov Model toolkit (HTK) tool to find tied-state triphones for all utterances, which are used as labels for the output layer in the DNN. The DNN with a bottleneck layer is trained in an unsupervised manner for calculating the initial weights between layers, then it is trained and tuned in a supervised manner to generate transformed mel-frequency cepstral coefficients (T-MFCCs). Second, the shared class labels method is introduced among misclassified classes to regularize the weights in DNN. Third, DNN-based speakers models using the SDC feature set is proposed. The speakers-aware model can capture the characteristics of the speaker age and gender more effectively than a model that represents a group of speakers. In addition, AGender-Tune system is proposed to classify the speaker age and gender by jointly fine-tuning two DNN models; the first model is pre-trained to classify the speaker age, and second model is pre-trained to classify the speaker gender. Moreover, the new T-MFCCs feature set is used as the input of a fusion model of two systems. The first system is the DNN-based class model and the second system is the DNN-based speaker model. Utilizing the T-MFCCs as input and fusing the final score with the score of a DNN-based class model enhanced the classification accuracies. Finally, the DNN-based speaker models are embedded into an AGender-Tune system to exploit the advantages of each method for a better speaker age and gender classification. The experimental results on a public challenging database showed the effectiveness of the proposed methods for enhancing the speaker age and gender classification and achieved the state of the art on this database

    Music Information Retrieval: An Inspirational Guide to Transfer from Related Disciplines

    Get PDF
    The emerging field of Music Information Retrieval (MIR) has been influenced by neighboring domains in signal processing and machine learning, including automatic speech recognition, image processing and text information retrieval. In this contribution, we start with concrete examples for methodology transfer between speech and music processing, oriented on the building blocks of pattern recognition: preprocessing, feature extraction, and classification/decoding. We then assume a higher level viewpoint when describing sources of mutual inspiration derived from text and image information retrieval. We conclude that dealing with the peculiarities of music in MIR research has contributed to advancing the state-of-the-art in other fields, and that many future challenges in MIR are strikingly similar to those that other research areas have been facing
    • …
    corecore