223 research outputs found

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios

    GLRT-Based Direction Detectors in Homogeneous Noise and Subspace Interference

    Get PDF
    In this paper, we derive and assess decision schemes to discriminate, resorting to an array of sensors, between the H0 hypothesis that data under test contain disturbance only (i.e., noise plus interference) and the H1 hypothesis that they also contain signal components along a direction which is a priori unknown but constrained to belong to a given subspace of the observables. The disturbance is modeled in terms of complex normal random vectors plus deterministic interference assumed to belong to a known subspace. We assume that a set of noise-only (secondary) data is available, which possess the same statistical characterization of noise in the cells under test. At the design stage, we resort to either the plain generalized-likelihood ratio test (GLRT) or the two-step GLRT-based design procedure. The performance analysis, conducted resorting to simulated data, shows that the one-step GLRT performs better than the detector relying on the two-step design procedure when the number of secondary data is comparable to the number of sensors; moreover, it outperforms a one-step GLRT-based subspace detector when the dimension of the signal subspace is sufficiently high

    An ABORT-like detector with improved mismatched signals rejection capabilities

    Get PDF
    In this paper, we present a GLRT-based adaptive detection algorithm for extended targets with improved rejection capabilities of mismatched signals. We assume that a set of secondary data is available and that noise returns in primary and secondary data share the same statistical characterization. To increase the selectivity of the detector, similarly to the ABORT formulation, we modify the hypothesis testing problem at hand introducing fictitious signals under the null hypothesis. Such unwanted signals are supposed to be orthogonal to the nominal steering vector in the whitened observation space. The performance assessment, carried out by Monte Carlo simulation, shows that the proposed dectector ensures better rejection capabilities of mismatched signals than existing ones, at the price of a certain loss in terms of detection of matched signals

    A novel approach to robust radar detection of range-spread targets

    Full text link
    This paper proposes a novel approach to robust radar detection of range-spread targets embedded in Gaussian noise with unknown covariance matrix. The idea is to model the useful target echo in each range cell as the sum of a coherent signal plus a random component that makes the signal-plus-noise hypothesis more plausible in presence of mismatches. Moreover, an unknown power of the random components, to be estimated from the observables, is inserted to optimize the performance when the mismatch is absent. The generalized likelihood ratio test (GLRT) for the problem at hand is considered. In addition, a new parametric detector that encompasses the GLRT as a special case is also introduced and assessed. The performance assessment shows the effectiveness of the idea also in comparison to natural competitors.Comment: 28 pages, 8 figure

    Blind user detection in doubly-dispersive DS/CDMA channels

    Full text link
    In this work, we consider the problem of detecting the presence of a new user in a direct-sequence/code-division-multiple-access (DS/CDMA) system with a doubly-dispersive fading channel, and we propose a novel blind detection strategy which only requires knowledge of the spreading code of the user to be detected, but no prior information as to the time-varying channel impulse response and the structure of the multiaccess interference. The proposed detector has a bounded constant false alarm rate (CFAR) under the design assumptions, while providing satisfactory detection performance even in the presence of strong cochannel interference and high user mobility.Comment: Accepted for publication on IEEE Transactions on Signal Processin

    Direction detector for distributed targets in unknown noise and interference

    Get PDF
    Adaptive detection of distributed radar targets in homogeneous Gaussian noise plus subspace interference is addressed. It is assumed that the actual steering vectors lie along a fixed and unknown direction of a preassigned and known subspace, while interfering signals are supposed to belong to an unknown subspace, with directions possibly varying from one resolution cell to another. The resulting detection problem is formulated in the framework of statistical hypothesis testing and solved using an ad hoc algorithm strongly related to the generalised likelihood ratio test. A performance analysis, carried out also in comparison to natural benchmarks, is presented

    A Unifying Framework for Adaptive Radar Detection in Homogeneous plus Structured Interference-Part II: Detectors Design

    Full text link
    This paper deals with the problem of adaptive multidimensional/multichannel signal detection in homogeneous Gaussian disturbance with unknown covariance matrix and structured (unknown) deterministic interference. The aforementioned problem extends the well-known Generalized Multivariate Analysis of Variance (GMANOVA) tackled in the open literature. In a companion paper, we have obtained the Maximal Invariant Statistic (MIS) for the problem under consideration, as an enabling tool for the design of suitable detectors which possess the Constant False-Alarm Rate (CFAR) property. Herein, we focus on the development of several theoretically-founded detectors for the problem under consideration. First, all the considered detectors are shown to be function of the MIS, thus proving their CFARness property. Secondly, coincidence or statistical equivalence among some of them in such a general signal model is proved. Thirdly, strong connections to well-known simpler scenarios found in adaptive detection literature are established. Finally, simulation results are provided for a comparison of the proposed receivers.Comment: Submitted for journal publicatio

    Theoretical performance analysis of the W-ABORT detector

    Get PDF
    In a recent paper we introduced a modification of the adaptive beaniformer orthogonal rejection test (ABORT) for adaptive detection of signals in unknown noise, by supposing under the null hypothesis the presence of signals orthogonal to the nominal steering vector in the whitened observation space. We will refer to this new receiver as the whitened adaptive beamformer orthogonal rejection test (W-ABORT). Through Monte Carlo simulations this new detector was shown to provide better rejection capabilities of mismatched (e.g., sidelobe) signals than existing ones, like ABORT or the adaptive coherence estimator (ACE), but at the price of a certain loss in terms of detection of matched (i.e., mainlobe) signals. The aim of this paper is to provide a theoretical validation of this fact. We consider both the case of distributed targets and point-like targets. We provide a statistical characterization of the W-ABORT test statistic, under the null hypothesis, and for matched and mismatched signals under the alternative hypothesis. For distributed targets, the probability of false alarm and the probability of detection can only be expressed in terms of multi-dimensional integrals, and are thus very complicated to obtain; in contrast, for point-like targets, such probabilities can be easily calculated by numerical integration techniques. The theoretical expressions derived herein corroborate the simulation results obtained previously
    corecore