12 research outputs found

    Generating 3D geothermal maps in Catalonia, Spain using a hybrid adaptive multitask deep learning procedure

    Get PDF
    Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.b - Per a 2030, ampliar la infraestructura i millorar la tecnologia per tal d’oferir serveis d’energia moderns i sos­tenibles per a tots els països en desenvolupament, en particular els països menys avançats, els petits estats insulars en desenvolupament i els països en desenvolupament sense litoral, d’acord amb els programes de suport respectiusPostprint (published version

    Methods and tools to evaluate the availability of renewable energy sources

    Get PDF
    The recent statements of both the European Union and the US Presidency pushed in the direction of using renewable forms of energy, in order to act against climate changes induced by the growing concentration of carbon dioxide in the atmosphere. In this paper, a survey regarding methods and tools presently available to determine potential and exploitable energy in the most important renewable sectors (i.e., solar, wind, wave, biomass and geothermal energy) is presented. Moreover, challenges for each renewable resource are highlighted as well as the available tools that can help in evaluating the use of a mix of different sources

    A Spatial-Based Integration Model for Regional Scale Solar Energy Technical Potential

    Get PDF
    One of the main objectives of human society in the present century is to achieve clean and sustainable energy through utilization of renewable energy sources (RESs). In this paper, the main purpose is to identify the locations that are suitable for solar energy in the Kurdistan province of Iran. Initially, solar-related data are collected, and suitable criterion and assessment methods are chosen according to the available data. Then, the theoretical potential of solar energy is assessed and the solar radiation map is prepared. Moreover, the technical potential of various solar technologies is evaluated in that study area. These technologies include concentrating solar power (CSP) and photovoltaic (PV) in power plant applications, and rooftop PV panels and solar water heaters in general applications. The results show that the Kurdistan province has the potential capacity for 691 MW of solar photovoltaic power plants and 645 MW of CSP plants. In the case of using solar water heaters, 283 million cubic meters of natural gas and 1.2 million liters of gasoline could be saved in fuel consumption. The savings in the application of domestic PV will be 10.2 MW in power generation

    RIHN Annual Report 2016 (English)

    Get PDF

    RIHN Annual Report 2015 (English)

    Get PDF

    RIHN Annual Report 2013 (English)

    Get PDF

    Optimal Design and Analysis of Grid-Connected Solar Photovoltaic Systems

    Get PDF
    Many countries consider utilizing renewable energy sources such as solar photovoltaic (PV), wind, and biomass to boost their potential for more clean and sustainable development and to gain revenues by export. In this thesis, a top-down approach of solar PV planning and optimization methodology is developed to enable high-performance at minimum costs. The first problem evaluates renewable resources and prioritizes their importance towards sustainable power generation. In the second problem, possible sites for solar PV potential are examined. In the third problem, optimal design of a grid-connected solar PV system is performed using HOMER software. A techno-economic feasibility of different system configurations including seven designs of tracking systems is conducted. In the fourth and the final problem, the optimal tilt and azimuth angles for maximum solar power generation are found. Using a detailed estimation model coded in MATLAB software, the solar irradiation on a tilted angle was estimated using a ground measurement of solar irradiation on a horizontal surface. A case study for Saudi Arabia is conducted. The results of our prioritization study show solar PV followed by concentrated solar power are the most favorable technologies followed by wind energy. Using a real climatology and legislation data, such as roads, mountains, and protected areas, land suitability is determined via AHP-GIS model. The overlaid result suitability map shows that 16% (300,000 km2) of the study area is promising for deploying utility-size PV power plants in the north and northwest of Saudi Arabia. The optimal PV system design for Makkah, Saudi Arabia shows that the two-axis tracker can produce 34% more power than the fixed system. Horizontal tracker with continuous adjustment shows the highest net present cost (NPC) and the highest levelized cost of energy (LCOE), with a high penetration of solar energy to the grid. At different tilt and azimuth angles, the solar irradiation, potential power, and system revenue were calculated for 18 cities in Saudi Arabia. For Riyadh city (high suitable site), the monthly adjustment increases the harvested solar energy by 4%. It is recommended to adjust the tilt angle five times per year to achieve near-optimal results and minimize the cost associated with workforce or solar trackers for monthly adjustments. The proposed work can be exploited by decision-makers in the solar energy area for optimal design and analysis of grid-connected solar photovoltaic systems
    corecore