142 research outputs found

    A versatile Montgomery multiplier architecture with characteristic three support

    Get PDF
    We present a novel unified core design which is extended to realize Montgomery multiplication in the fields GF(2n), GF(3m), and GF(p). Our unified design supports RSA and elliptic curve schemes, as well as the identity-based encryption which requires a pairing computation on an elliptic curve. The architecture is pipelined and is highly scalable. The unified core utilizes the redundant signed digit representation to reduce the critical path delay. While the carry-save representation used in classical unified architectures is only good for addition and multiplication operations, the redundant signed digit representation also facilitates efficient computation of comparison and subtraction operations besides addition and multiplication. Thus, there is no need for a transformation between the redundant and the non-redundant representations of field elements, which would be required in the classical unified architectures to realize the subtraction and comparison operations. We also quantify the benefits of the unified architectures in terms of area and critical path delay. We provide detailed implementation results. The metric shows that the new unified architecture provides an improvement over a hypothetical non-unified architecture of at least 24.88%, while the improvement over a classical unified architecture is at least 32.07%

    Efficient Unified Arithmetic for Hardware Cryptography

    Get PDF
    The basic arithmetic operations (i.e. addition, multiplication, and inversion) in finite fields, GF(q), where q = pk and p is a prime integer, have several applications in cryptography, such as RSA algorithm, Diffie-Hellman key exchange algorithm [1], the US federal Digital Signature Standard [2], elliptic curve cryptography [3, 4], and also recently identity based cryptography [5, 6]. Most popular finite fields that are heavily used in cryptographic applications due to elliptic curve based schemes are prime fields GF(p) and binary extension fields GF(2n). Recently, identity based cryptography based on pairing operations defined over elliptic curve points has stimulated a significant level of interest in the arithmetic of ternary extension fields, GF(3^n)

    Efficient Bit-parallel Multiplication with Subquadratic Space Complexity in Binary Extension Field

    Get PDF
    Bit-parallel multiplication in GF(2^n) with subquadratic space complexity has been explored in recent years due to its lower area cost compared with traditional parallel multiplications. Based on \u27divide and conquer\u27 technique, several algorithms have been proposed to build subquadratic space complexity multipliers. Among them, Karatsuba algorithm and its generalizations are most often used to construct multiplication architectures with significantly improved efficiency. However, recursively using one type of Karatsuba formula may not result in an optimal structure for many finite fields. It has been shown that improvements on multiplier complexity can be achieved by using a combination of several methods. After completion of a detailed study of existing subquadratic multipliers, this thesis has proposed a new algorithm to find the best combination of selected methods through comprehensive search for constructing polynomial multiplication over GF(2^n). Using this algorithm, ameliorated architectures with shortened critical path or reduced gates cost will be obtained for the given value of n, where n is in the range of [126, 600] reflecting the key size for current cryptographic applications. With different input constraints the proposed algorithm can also yield subquadratic space multiplier architectures optimized for trade-offs between space and time. Optimized multiplication architectures over NIST recommended fields generated from the proposed algorithm are presented and analyzed in detail. Compared with existing works with subquadratic space complexity, the proposed architectures are highly modular and have improved efficiency on space or time complexity. Finally generalization of the proposed algorithm to be suitable for much larger size of fields discussed

    Reconfigurable elliptic curve cryptography

    Get PDF
    Elliptic Curve Cryptosystems (ECC) have been proposed as an alternative to other established public key cryptosystems such as RSA (Rivest Shamir Adleman). ECC provide more security per bit than other known public key schemes based on the discrete logarithm problem. Smaller key sizes result in faster computations, lower power consumption and memory and bandwidth savings, thus making ECC a fast, flexible and cost-effective solution for providing security in constrained environments. Implementing ECC on reconfigurable platform combines the speed, security and concurrency of hardware along with the flexibility of the software approach. This work proposes a generic architecture for elliptic curve cryptosystem on a Field Programmable Gate Array (FPGA) that performs an elliptic curve scalar multiplication in 1.16milliseconds for GF (2163), which is considerably faster than most other documented implementations. One of the benefits of the proposed processor architecture is that it is easily reprogrammable to use different algorithms and is adaptable to any field order. Also through reconfiguration the arithmetic unit can be optimized for different area/speed requirements. The mathematics involved uses binary extension field of the form GF (2n) as the underlying field and polynomial basis for the representation of the elements in the field. A significant gain in performance is obtained by using projective coordinates for the points on the curve during the computation process

    Improved throughput of Elliptic Curve Digital Signature Algorithm (ECDSA) processor implementation over Koblitz curve k-163 on Field Programmable Gate Array (FPGA)

    Get PDF
    يقـدم البحث دراسة عن تصميم وتنفيذ دائرة الكترونية لتوليد التوقيع الالكتروني والتاكد من صحته ,بالاعتماد على مواصفات المنحني الاهليجي الموصى بها من  قبل المعهد الوطني للمعايير والتكنولوجيا(NIST) .حيث أرتكز العمل على إختيار منحني كوبلتز وتطبيقه على الحقول المنتهية أو ما تسمى بحقول غالو(2163)GF، ونظراً لأهمية تحسين الأداء في المعالجات الحديثة المبنية في بيئة البوابات المنطقية القابلة للبرمجة (FPGA)،  فقد أظهرت نتائج المحاكاة والتنفيذ للتصميم المقترح على الجهاز نوع Virtex5-xc5vlx155t-3ff1738  زيادة في معدل البيانات التي يتم معالجتها اثناء عمليتي توليد التوقيع واثبات صحته الى 0.08187 Mbit/s وبنسبة تصل الى 6.95% ,بالمقارنة مع التصميمات السابقة ، كما أستغرقت مدة تنفيذ العمليتين 1.66 ملي ثانية وبتردد أقصاه 83.477 ميكاهرتز. تم الاخذ بنظرالاعتبار تصميم المنفذ التسلسلي غير المتزامن (UART) والمستخدم في عملية نقل البيانات بين الحاسبة وFPGA .            The widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device. The present paper puts forward an enhancement for the throughput performance metric by proposing a more efficient design for the hardware implementation of ECDSA. The design raised the throughput to 0.08207 Mbit/s, leading to an increase of 6.95% from the existing design. It also includes the design and implementation of the Universal Asynchronous Receiver Transmitter (UART) module. The present work is based on a 163-bit key-size over Koblitz curve k-163 and secure hash function SHA-1. A serial module for the underlying modular layer, high-speed architecture of Koblitz point addition and Koblitz point multiplication have been considered in this work, in addition to utilising the carry-save-multiplier, modular adder-subtractor and Extended Euclidean module for ECDSA protocols. All modules are designed using VHDL and implemented on the platform Virtex5 xc5vlx155t-3ff1738. Signature generation requires 0.55360ms, while its validation consumes 1.10947288ms. Thus, the total time required to complete both processes is equal to 1.66ms and the maximum frequency is approximately 83.477MHZ, consuming a power of 99mW with the efficiency approaching 3.39 * 10-6
    corecore