29 research outputs found

    GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data

    Full text link
    The Gene Expression Profile Analysis Suite, GEPAS, has been running for more than three years. With >76 000 experiments analysed during the last year and a daily average of almost 300 analyses, GEPAS can be considered a well-established and widely used platform for gene expression microarray data analysis. GEPAS is oriented to the analysis of whole series of experiments. Its design and development have been driven by the demands of the biomedical community, probably the most active collective in the field of microarray users. Although clustering methods have obviously been implemented in GEPAS, our interest has focused more on methods for finding genes differentially expressed among distinct classes of experiments or correlated to diverse clinical outcomes, as well as on building predictors. There is also a great interest in CGH-arrays which fostered the development of the corresponding tool in GEPAS: InSilicoCGH. Much effort has been invested in GEPAS for developing and implementing efficient methods for functional annotation of experiments in the proper statistical framework. Thus, the popular FatiGO has expanded to a suite of programs for functional annotation of experiments, including information on transcription factor binding sites, chromosomal location and tissues. The web-based pipeline for microarray gene expression data, GEPAS, is available at http://www.gepas.org. © 2005 Oxford University Press.J.M.V. is supported by the Formacion del Personal Investigador fellowship program from the Ministerio de Educación y Ciencia. L.C. is supported by a fellowship from the Fondo de Investigacion Sanitaria (grant PI020919). P.M. is supported by a grant from Genoma España and Canada Genome.This work is partly supported by grants from Fundación Ramón Areces, Fundació La Caixa, Fundación BBVA and RTICCC from the FI

    GEPAS, an experiment-oriented pipeline for the analysis of microarray gene expression data

    Get PDF
    The Gene Expression Profile Analysis Suite, GEPAS, has been running for more than three years. With >76 000 experiments analysed during the last year and a daily average of almost 300 analyses, GEPAS can be considered a well-established and widely used platform for gene expression microarray data analysis. GEPAS is oriented to the analysis of whole series of experiments. Its design and development have been driven by the demands of the biomedical community, probably the most active collective in the field of microarray users. Although clustering methods have obviously been implemented in GEPAS, our interest has focused more on methods for finding genes differentially expressed among distinct classes of experiments or correlated to diverse clinical outcomes, as well as on building predictors. There is also a great interest in CGH-arrays which fostered the development of the corresponding tool in GEPAS: InSilicoCGH. Much effort has been invested in GEPAS for developing and implementing efficient methods for functional annotation of experiments in the proper statistical framework. Thus, the popular FatiGO has expanded to a suite of programs for functional annotation of experiments, including information on transcription factor binding sites, chromosomal location and tissues. The web-based pipeline for microarray gene expression data, GEPAS, is available at

    GEPS: the Gene Expression Pattern Scanner

    Get PDF
    Gene Expression Pattern Scanner (GEPS) is a web-based server to provide interactive pattern analysis of user-submitted microarray data for facilitating their further interpretation. Putative gene expression patterns such as correlated expression, similar expression and specific expression are determined globally and systematically using geometric comparison and correlation analysis methods. These patterns can be visualized via linear plot with quantitative measures. User-defined threshold value is allowed to customize the format of the pattern search results. For better understanding of gene expression, patterns derived from 329 205 non-redundant gene expression records from the GNF SymAltas and the Gene Expression Omnibus are also provided. These profiles cover 24 277 human genes in 79 tissues, 32 905 mouse genes in 61 tissues and 4201 rat genes in 44 tissues. GEPS is available at

    From genes to functional classes in the study of biological systems

    Get PDF
    BACKGROUND: With the popularisation of high-throughput techniques, the need for procedures that help in the biological interpretation of results has increased enormously. Recently, new procedures inspired in systems biology criteria have started to be developed. RESULTS: Here we present FatiScan, a web-based program which implements a threshold-independent test for the functional interpretation of large-scale experiments that does not depend on the pre-selection of genes based on the multiple application of independent tests to each gene. The test implemented aims to directly test the behaviour of blocks of functionally related genes, instead of focusing on single genes. In addition, the test does not depend on the type of the data used for obtaining significance values, and consequently different types of biologically informative terms (gene ontology, pathways, functional motifs, transcription factor binding sites or regulatory sites from CisRed) can be applied to different classes of genome-scale studies. We exemplify its application in microarray gene expression, evolution and interactomics. CONCLUSION: Methods for gene set enrichment which, in addition, are independent from the original data and experimental design constitute a promising alternative for the functional profiling of genome-scale experiments. A web server that performs the test described and other similar ones can be found at:

    Computational approaches to study transcriptional regulation in the human genome

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 22-02-200
    corecore