577 research outputs found

    Evolutionary Computation in System Identification: Review and Recommendations

    Get PDF
    Two of the steps in system identification are model structure selection and parameter estimation. In model structure selection, several model structures are evaluated and selected. Because the evaluation of all possible model structures during selection and estimation of the parameters requires a lot of time, a rigorous method in which these tasks can be simplified is usually preferred. This paper reviews cumulatively some of the methods that have been tried since the past 40 years. Among the methods, evolutionary computation is known to be the most recent one and hereby being reviewed in more detail, including what advantages the method contains and how it is specifically implemented. At the end of the paper, some recommendations are provided on how evolutionary computation can be utilized in a more effective way. In short, these are by modifying the search strategy and simplifying the procedure based on problem a priori knowledge

    Optimum grouping in a modified genetic algorithm for discrete-time, non-linear system identification

    Get PDF
    The genetic algorithm approach is widely recognized as an effective and flexible optimization method for system identification. The flexibility of a genetic algorithm allows various strategies to be applied to it. One of the strategies applied is the modified genetic algorithm which relies on, among other things, the separation of the population into groups where each group undergoes mutual recombination operations. The strategy has been shown to be better than the simple genetic algorithm and conventional statistical method, but it contains inadequate justification of how the separation is made. The usage of objective function values for separation of groups does not carry much flexibility and is not suitable since different time-dependent data have different levels of equilibrium and thus different ranges of objective function values. This paper investigates the optimum grouping of chromosomes by fixed group ratios, enabling more efficient identification of dynamic systems using a NARX (Non-linear AutoRegressive with eXogenous input) model. Several simulated systems and real-world timedependent data are used in the investigation. Comparisons based on widely used optimization performance indicators along with outcomes from other research are used. The issue of model parsimony is also addressed, and the model is validated using correlation tests. The study reveals that, when recombination and mutation are used for different groups, equal composition of both groups produces a better result in terms of accuracy, parsimony, speed, and consistency

    Supervisory machine control by predictive-reactive scheduling

    Get PDF

    Study of forces in a 2T9R robot mechanism

    Get PDF
    The paper presents in detail a method of calculating the forces acting on a 2T9R type robot. In order to determine the reactions (forces in the kinematic couples), one must first determine the inertial forces in the mechanism to which one or more useful loads of the robot can be added. The torsor of the inertia forces is calculated with the help of the masses of the machine elements and the accelerations from the centers of mass of the mechanism elements, so the positions, velocities, and accelerations acting on it will be determined, i.e. its complete kinematics. The calculation method applied by a MathCad program intelligently uses data entry through the IFLOG logic function so that the calculations can be automated. So the effective automation of the calculation program is done exclusively through the IFLOG functions originally used in the paper

    Dynamic modeling and parameter estimation of a hydraulic robot manipulator using a multi-objective genetic algorithm

    Get PDF
    This article concerns the problem of dynamic modeling and parameter estimation for a seven degree of freedom hydraulic manipulator. The laboratory example is a dual-manipulator mobile robotic platform used for research into nuclear decommissioning. In contrast to earlier control model orientated research using the same machine, the article develops a nonlinear, mechanistic simulation model that can subsequently be used to investigate physically meaningful disturbances. The second contribution is to optimize the parameters of the new model, i.e. to determine reliable estimates of the physical parameters of a complex robotic arm which are not known in advance. To address the nonlinear and non-convex nature of the problem, the research relies on the multi-objectivization of an output error single performance index. The developed algorithm utilises a multi-objective Genetic Algorithm (GA) in order to find a proper solution. The performance of the model and the GA is evaluated using both simulated (i.e. with a known set of ‘true’ parameters) and experimental data. Both simulation and experimental results show that multi-objectivization has improved convergence of the estimated parameters compared to the single objective output error problem formulation. This is achieved by integrating the validation phase inside the algorithm implicitly and exploiting the inherent structure of the multi-objective GA for this specific system identification problem

    Advanced suspension system using magnetorheological technology for vehicle vibration control

    Get PDF
    In the past forty years, the concept of controllable vehicle suspension has attracted extensive attention. Since high price of an active suspension system and deficiencies on a passive suspension, researchers pay a lot attention to semi-active suspension. Magneto-rheological fluid (MRF) is always an ideal material of semi-active structure. Thanks to its outstanding features like large yield stress, fast response time, low energy consumption and significant rheological effect. MR damper gradually becomes a preferred component of semi-active suspension for improving the riding performance of vehicle. However, because of the inherent nonlinear nature of MR damper, one of the challenging aspects of utilizing MR dampers to achieve high levels of performance is the development of an appropriate control strategy that can take advantage of the unique characteristics of MR dampers. This is why this project has studied semi-active MR control technology of vehicle suspensions to improve their performance. Focusing on MR semi-active suspension, the aim of this thesis sought to develop system structure and semi-active control strategy to give a vehicle opportunity to have a better performance on riding comfort. The issues of vibration control of the vehicle suspension were systematically analysed in this project. As a part of this research, a quarter-car test rig was built; the models of suspension and MR damper were established; the optimization work of mechanical structure and controller parameters was conducted to further improve the system performance; an optimized MR damper (OMRD) for a vehicle suspension was designed, fabricated, and tested. To utilize OMRD to achieve higher level of performance, an appropriate semi-active control algorithm, state observer-based Takagi-Sugeno fuzzy controller (SOTSFC), was designed for the semi-active suspension system, and its feasibility was verified through an experiment. Several tests were conducted on the quarter-car suspension to investigate the real effect of this semiactive control by changing suspension damping. In order to further enhance the vibration reduction performance of the vehicle, a fullsize variable stiffness and variable damping (VSVD) suspension was further designed, fabricated, and tested in this project. The suspension can be easily installed into a vehicle suspension system without any change to the original configuration. A new 3- degree of freedom (DOF) phenomenological model to further accurately describe the dynamic characteristic of the VSVD suspension was also presented. Based on a simple on-off controller, the performance of the variable stiffness and damping suspension was verified numerically. In addition, an innovative TS fuzzy modelling based VSVD controller was designed. The TS fuzzy modelling controller includes a skyhook damping control module and a state observer based stiffness control module which considering road dominant frequency in real-time. The performance evaluation of the VSVD control algorithm was based on the quarter-car test rig which equipping the VSVD suspension. The experiment results showed that this strategy increases riding comfort effectively, especially under off-road working condition. The semi-active control system developed in this thesis can be adapted and used on a vehicle suspension in order to better control vibration

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Symbiotic Organisms Search Algorithm: theory, recent advances and applications

    Get PDF
    The symbiotic organisms search algorithm is a very promising recent metaheuristic algorithm. It has received a plethora of attention from all areas of numerical optimization research, as well as engineering design practices. it has since undergone several modifications, either in the form of hybridization or as some other improved variants of the original algorithm. However, despite all the remarkable achievements and rapidly expanding body of literature regarding the symbiotic organisms search algorithm within its short appearance in the field of swarm intelligence optimization techniques, there has been no collective and comprehensive study on the success of the various implementations of this algorithm. As a way forward, this paper provides an overview of the research conducted on symbiotic organisms search algorithms from inception to the time of writing, in the form of details of various application scenarios with variants and hybrid implementations, and suggestions for future research directions

    Kinematic and dynamic study of a manipulator 1T6R

    Get PDF
    The paper presents in detail a method of calculating the forces acting on a 1T6R robot manipulator. To determine the reactions (forces in kinematic torques), you must first determine the inertial forces in the mechanism to which one or more payloads of the robot can be added. The torsion of the inertial forces is calculated using the masses of the machine elements and the accelerations at the centers of mass of the elements of the mechanism, so that the positions, speeds, and accelerations acting on it, ie its complete kinematics, will be determined. Equations of the dynamics are also determined through an original method

    Product Design

    Get PDF
    Product design is a comprehensive process related to the creation of new products, and the ability to design and develop efficient products are key to success in today’s dynamic global market. Written by experts in the field, this book provides a comprehensive overview of the product design process and its applications in various fields, particularly engineering. Over seven chapters, the authors explore such topics as development of new product design methodologies, implementation of effective methods for integrated products, development of more visualized environments for task-based conceptual design methods, and development of engineering design tools based on 3D photogrammetry, among others
    • …
    corecore