4,943 research outputs found

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363

    Examples of Artificial Perceptions in Optical Character Recognition and Iris Recognition

    Full text link
    This paper assumes the hypothesis that human learning is perception based, and consequently, the learning process and perceptions should not be represented and investigated independently or modeled in different simulation spaces. In order to keep the analogy between the artificial and human learning, the former is assumed here as being based on the artificial perception. Hence, instead of choosing to apply or develop a Computational Theory of (human) Perceptions, we choose to mirror the human perceptions in a numeric (computational) space as artificial perceptions and to analyze the interdependence between artificial learning and artificial perception in the same numeric space, using one of the simplest tools of Artificial Intelligence and Soft Computing, namely the perceptrons. As practical applications, we choose to work around two examples: Optical Character Recognition and Iris Recognition. In both cases a simple Turing test shows that artificial perceptions of the difference between two characters and between two irides are fuzzy, whereas the corresponding human perceptions are, in fact, crisp.Comment: 5th Int. Conf. on Soft Computing and Applications (Szeged, HU), 22-24 Aug 201

    Automatic Recognition of Film Genres

    Full text link
    Film genres in digital video can be detected automatically. In a three-step approach we analyze first the syntactic properties of digital films: color statistics, cut detection, camera motion, object motion and audio. In a second step we use these statistics to derive at a more abstract level film style attributes such as camera panning and zooming, speech and music. These are distinguishing properties for film genres, e.g. newscasts vs. sports vs. commercials. In the third and final step we map the detected style attributes to film genres. Algorithms for the three steps are presented in detail, and we report on initial experience with real videos. It is our goal to automatically classify the large body of existing video for easier access in digital video-on-demand databases

    The aceToolbox: low-level audiovisual feature extraction for retrieval and classification

    Get PDF
    In this paper we present an overview of a software platform that has been developed within the aceMedia project, termed the aceToolbox, that provides global and local lowlevel feature extraction from audio-visual content. The toolbox is based on the MPEG-7 eXperimental Model (XM), with extensions to provide descriptor extraction from arbitrarily shaped image segments, thereby supporting local descriptors reflecting real image content. We describe the architecture of the toolbox as well as providing an overview of the descriptors supported to date. We also briefly describe the segmentation algorithm provided. We then demonstrate the usefulness of the toolbox in the context of two different content processing scenarios: similarity-based retrieval in large collections and scene-level classification of still images

    The current approaches in pattern recognition

    Get PDF

    Constructing a fuzzy grammar for syntactic face detection

    Get PDF
    This paper presents a structural face detection system. The proposed system consists of three stages; pre-processing, face-components extraction, and final decision-making. In the first stage, image conversion, colour operation, image restoration, and image enhancement are carried out. Face components are extracted in the second stage. A face model is defined, and a fuzzy grammar composed of octal chain codes is used to represent each of the seven face components. The practical limitations of this representation are considered. Structural components are detected, and the possibility degree that the extracted component is a real face component is determined. In the last stage, a commonsense knowledge base is employed for final evaluation. The detected face components and their corresponding possibility degrees allow the human face knowledge base to locate faces in the image and generate a membership degree for that face within the face class. The experimental results obtained using this method are presented

    Study and development of techniques for automatic control of remote manipulators

    Get PDF
    An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning
    corecore