13,395 research outputs found

    Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition

    Full text link
    Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.Air Force Office of Scientific Research (F40620-01-1-0423); National Geographic-Intelligence Agency (NMA 201-001-1-2016); National Science Foundation (SBE-0354378; BCS-0235298); Office of Naval Research (N00014-01-1-0624); National Geospatial-Intelligence Agency and the National Society of Siegfried Martens (NMA 501-03-1-2030, DGE-0221680); Department of Homeland Security graduate fellowshi

    Fuzzy set methods for object recognition in space applications

    Get PDF
    Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed

    Unifying Multiple Knowledge Domains Using the ARTMAP Information Fusion System

    Full text link
    Sensors working at different times, locations, and scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels that are reconciled by their implicit underlying relationships. Even when such relationships are unknown to the user, an ARTMAP information fusion system discovers a hierarchical knowledge structure for a labeled dataset. The present paper addresses the problem of integrating two or more independent knowledge hierarchies based on the same low-level classes. The new system fuses independent domains into a unified knowledge structure, discovering cross-domain rules in this process. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, ARTMAP information fusion system features distributed code representations that exploit the neural network’s capacity for one-to-many learning. The fusion system software and testbed datasets are available from http://cns.bu.edu/techlabNational Science Foundation (SBE-0354378); National Geospatial-Intelligence Agency (NMA 201-01-1-2016

    Self-Organizing Information Fusion and Hierarchical Knowledge Discovery: A New Framework Using Artmap Neural Networks

    Full text link
    Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016, NMA 501-03-1-2030); National Science Foundation (SBE-0354378, DGE-0221680); Office of Naval Research (N00014-01-1-0624); Department of Homeland Securit

    Information Fusion and Hierarchical Knowledge Discovery by ARTMAP Neural Networks

    Full text link
    Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624

    Automatic rule generation for high-level vision

    Get PDF
    Many high-level vision systems use rule-based approaches to solving problems such as autonomous navigation and image understanding. The rules are usually elaborated by experts. However, this procedure may be rather tedious. In this paper, we propose a method to generate such rules automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules

    Large-Scale Neural Systems for Vision and Cognition

    Full text link
    — Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.Defense Advanced Research Projects Research Agency (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC subcontract 801881-BS under prime contract HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (SBE-0354378

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore