27,763 research outputs found

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Automatic goal allocation for a planetary rover with DSmT

    Get PDF
    In this chapter, we propose an approach for assigning aninterest level to the goals of a planetary rover. Assigning an interest level to goals, allows the rover to autonomously transform and reallocate the goals. The interest level is defined by data-fusing payload and navigation information. The fusion yields an 'interest map',that quantifies the level of interest of each area around the rover. In this way the planner can choose the most interesting scientific objectives to be analysed, with limited human intervention, and reallocates its goals autonomously. The Dezert-Smarandache Theory of Plausible and Paradoxical Reasoning was used for information fusion: this theory allows dealing with vague and conflicting data. In particular, it allows us to directly model the behaviour of the scientists that have to evaluate the relevance of a particular set of goals. This chaptershows an application of the proposed approach to the generation of a reliable interest map

    A two-step fusion process for multi-criteria decision applied to natural hazards in mountains

    Get PDF
    Mountain river torrents and snow avalanches generate human and material damages with dramatic consequences. Knowledge about natural phenomenona is often lacking and expertise is required for decision and risk management purposes using multi-disciplinary quantitative or qualitative approaches. Expertise is considered as a decision process based on imperfect information coming from more or less reliable and conflicting sources. A methodology mixing the Analytic Hierarchy Process (AHP), a multi-criteria aid-decision method, and information fusion using Belief Function Theory is described. Fuzzy Sets and Possibilities theories allow to transform quantitative and qualitative criteria into a common frame of discernment for decision in Dempster-Shafer Theory (DST ) and Dezert-Smarandache Theory (DSmT) contexts. Main issues consist in basic belief assignments elicitation, conflict identification and management, fusion rule choices, results validation but also in specific needs to make a difference between importance and reliability and uncertainty in the fusion process
    • ā€¦
    corecore