4,636 research outputs found

    Fuzzy-description logic for supporting the rehabilitation of the elderly

    Full text link
    [EN] According to the latest statistics, the proportion of the elderly (+65) is increasing and is expected to double within the European Union in a period of 50 years. This ageing is due to the improvement of quality of life and advances in medicine in the last decades. Gerontechnology is receiving a great deal of attention as a way of providing the elderly with sustainable products, environments, and services combining gerontology and technology. One of the most important aspects to consider by gerontechnology is the mobility/rehabilitation technologies, because there is an important relationship between mobility and the elderly's quality of life. Telerehabilitation systems have emerged to allow the elderly to perform their rehabilitation exercises remotely. However, in many cases, the proposed systems assist neither the patients nor the experts about the progress of the rehabilitation. To address this problem, we propose in this paper, a fuzzy-semantic system for evaluating patient's physical state during the rehabilitation process based on well-known standard for patients' evaluation. Moreover, a tool called FINE has been developed that facilitates the evaluation be accomplished in a semi-automatic way first asking patients to carry out a set of standard tests and then inferencing their state by means of a fuzzy-semantic approach using the data captured during the rehabilitation tasks.This research was funded by the Spanish Ministry of Economy and Competitiveness and by EU FEDER funds under project grants TIN2016-79100-R and TIN2015-72931-EXP. It has also been funded by the Junta de Comunidades de Castilla¿La Mancha scholarship 2018-UCLM1-9131Moya, A.; Navarro, E.; Jaén Martínez, FJ.; González, P. (2020). Fuzzy-description logic for supporting the rehabilitation of the elderly. Expert Systems. 37(2):1-16. https://doi.org/10.1111/exsy.12464116372Alamri, A., Cha, J., & El Saddik, A. (2010). AR-REHAB: An Augmented Reality Framework for Poststroke-Patient Rehabilitation. IEEE Transactions on Instrumentation and Measurement, 59(10), 2554-2563. doi:10.1109/tim.2010.2057750Antoniou, G., & van Harmelen, F. (2004). Web Ontology Language: OWL. Handbook on Ontologies, 67-92. doi:10.1007/978-3-540-24750-0_4Bobillo F.(2008).Managing vagueness in ontologies. Universidad de Granada.Bobillo F. (2015).The fuzzyDL system. Retrieved July 10 2018 fromhttp://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.htmlBobillo, F., Delgado, M., & Gómez-Romero, J. (2012). DeLorean: A reasoner for fuzzy OWL 2. Expert Systems with Applications, 39(1), 258-272. doi:10.1016/j.eswa.2011.07.016Bobillo, F., & Straccia, U. (2016). The fuzzy ontology reasoner fuzzyDL. Knowledge-Based Systems, 95, 12-34. doi:10.1016/j.knosys.2015.11.017Boucenna, S., Narzisi, A., Tilmont, E., Muratori, F., Pioggia, G., Cohen, D., & Chetouani, M. (2014). Interactive Technologies for Autistic Children: A Review. Cognitive Computation, 6(4), 722-740. doi:10.1007/s12559-014-9276-xCarter J. E. L.(2002).The Heath‐Carter anthropometric somatotype—Instruction manual. San Diego:State University.Chiu, Y.-H., Chen, T.-W., Chen, Y. J., Su, C.-I., Hwang, K.-S., & Ho, W.-H. (2018). Fuzzy logic-based mobile computing system for hand rehabilitation after neurological injury. Technology and Health Care, 26(1), 17-27. doi:10.3233/thc-171403Fernández-Caballero, A., González, P., & Navarro, E. (2017). Gerontechnologies - Current achievements and future trends. Expert Systems, 34(2), e12203. doi:10.1111/exsy.12203Giles, R. (1976). Łukasiewicz logic and fuzzy set theory. International Journal of Man-Machine Studies, 8(3), 313-327. doi:10.1016/s0020-7373(76)80003-xHsieh, Y.-W., Hsueh, I.-P., Chou, Y.-T., Sheu, C.-F., Hsieh, C.-L., & Kwakkel, G. (2007). Development and Validation of a Short Form of the Fugl-Meyer Motor Scale in Patients With Stroke. Stroke, 38(11), 3052-3054. doi:10.1161/strokeaha.107.490730Karime, A., Eid, M., Alja’am, J. M., Saddik, A. E., & Gueaieb, W. (2014). A Fuzzy-Based Adaptive Rehabilitation Framework for Home-Based Wrist Training. IEEE Transactions on Instrumentation and Measurement, 63(1), 135-144. doi:10.1109/tim.2013.2277536Krynicki, K., Jaen, J., & Navarro, E. (2016). An ACO-based personalized learning technique in support of people with acquired brain injury. Applied Soft Computing, 47, 316-331. doi:10.1016/j.asoc.2016.04.039Leap Motion INC. (2018).Leap Motion. Retrieved July 10 2018 fromhttps://www.leapmotion.com/Lukasiewicz, T., & Straccia, U. (2008). Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics, 6(4), 291-308. doi:10.1016/j.websem.2008.04.001Metz, D. . (2000). Mobility of older people and their quality of life. Transport Policy, 7(2), 149-152. doi:10.1016/s0967-070x(00)00004-4Nassabi M. H. Den Akker H. &Vollenbroek‐Hutten M. (2014).An ontology‐based recommender system to promote physical activity for pre‐frail elderly 181–184.Navarro, E., González, P., López-Jaquero, V., Montero, F., Molina, J. P., & Romero-Ayuso, D. (2018). Adaptive, Multisensorial, Physiological and Social: The Next Generation of Telerehabilitation Systems. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.00043OpenNI Pioneering Members. (2018).OpenNI. Retrieved July 10 2018 fromhttp://openni.ru/about/index.htmlOrbbec 3D. (2018).Orbbec Astra Pro. Retrieved July 10 2018 fromhttps://orbbec3d.com/product‐astra‐pro/Rodríguez, A. C., Roda, C., Montero, F., González, P., & Navarro, E. (2015). An Interactive Fuzzy Inference System for Teletherapy of Older People. Cognitive Computation, 8(2), 318-335. doi:10.1007/s12559-015-9356-6Shaughnessy, M., Resnick, B. M., & Macko, R. F. (2006). Testing a Model of Post-Stroke Exercise Behavior. Rehabilitation Nursing, 31(1), 15-21. doi:10.1002/j.2048-7940.2006.tb00005.xSu, C.-J., Chiang, C.-Y., & Huang, J.-Y. (2014). Kinect-enabled home-based rehabilitation system using Dynamic Time Warping and fuzzy logic. Applied Soft Computing, 22, 652-666. doi:10.1016/j.asoc.2014.04.020Velozo, C. A., & Woodbury, M. L. (2011). Translating measurement findings into rehabilitation practice: An example using Fugl-Meyer Assessment-Upper Extremity with patients following stroke. The Journal of Rehabilitation Research and Development, 48(10), 1211. doi:10.1682/jrrd.2010.10.0203W3C. (2012).OWL 2 web ontology language. Retrieved July 10 2018 from https://www.w3.org/TR/owl2‐overview/Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhang, Z., Fang, Q., & Gu, X. (2014). Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity rehabilitation. Expert Systems with Applications, 41(4), 1973-1980. doi:10.1016/j.eswa.2013.08.09

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility

    Get PDF

    Circus in Motion: A Multimodal Exergame Supporting Vestibular Therapy for Children with Autism

    Get PDF
    Exergames are serious games that involve physical exertion and are thought of as a form of exercise by using novel input models. Exergames are promising in improving the vestibular differences of children with autism but often lack of adaptation mechanisms that adjust the difficulty level of the exergame. In this paper, we present the design and development of Circus in Motion, a multimodal exergame supporting children with autism with the practice of non-locomotor movements. We describe how the data from a 3D depth camera enables the tracking of non-locomotor movements allowing children to naturally interact with the exergame . A controlled experiment with 12 children with autism shows Circus in Motion excels traditional vestibular therapies in increasing physical activation and the number of movements repetitions. We show how data from real-time usage of Circus in Motion could be used to feed a fuzzy logic model that can adjust the difficulty level of the exergame according to each childs motor performance. We close discussing open challenges and opportunities of multimodal exergames to support motor therapeutic interventions for children with autism in the long-term

    Automatic recognition of gait patterns in human motor disorders using machine learning: A review

    Get PDF
    Background: automatic recognition of human movement is an effective strategy to assess abnormal gait patterns. Machine learning approaches are mainly applied due to their ability to work with multidimensional nonlinear features. Purpose: to compare several machine learning algorithms employed for gait pattern recognition in motor disorders using discriminant features extracted from gait dynamics. Additionally, this work highlights procedures that improve gait recognition performance. Methods: we conducted an electronic literature search on Web of Science, IEEE, and Scopus, using “human recognition”, “gait patterns’’, and “feature selection methods” as relevant keywords. Results: analysis of the literature showed that kernel principal component analysis and genetic algorithms are efficient at reducing dimensional features due to their ability to process nonlinear data and converge to global optimum. Comparative analysis of machine learning performance showed that support vector machines (SVMs) exhibited higher accuracy and proper generalization for new instances. Conclusions: automatic recognition by combining dimensional data reduction, cross-validation and normalization techniques with SVMs may offer an objective and rapid tool for investigating the subject's clinical status. Future directions comprise the real-time application of these tools to drive powered assistive devices in free-living conditions.This work was supported by the FCT - Fundação para a Ciência e Tecnologia - with the reference scholarship SFRH/BD/108309/2015, and the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalização (POCI) - with the reference project POCI-01-0145-FEDER-006941. Also, this work was partially supported by grant RYC-2014-16613 by Spanish Ministry of Economy and Competitiveness

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area
    corecore