4,448 research outputs found

    Fuzzy Logic in Medicine and Bioinformatics

    Get PDF
    The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of genomes)

    Artificial intelligence (AI) in rare diseases: is the future brighter?

    Get PDF
    The amount of data collected and managed in (bio)medicine is ever-increasing. Thus, there is a need to rapidly and efficiently collect, analyze, and characterize all this information. Artificial intelligence (AI), with an emphasis on deep learning, holds great promise in this area and is already being successfully applied to basic research, diagnosis, drug discovery, and clinical trials. Rare diseases (RDs), which are severely underrepresented in basic and clinical research, can particularly benefit from AI technologies. Of the more than 7000 RDs described worldwide, only 5% have a treatment. The ability of AI technologies to integrate and analyze data from different sources (e.g., multi-omics, patient registries, and so on) can be used to overcome RDs' challenges (e.g., low diagnostic rates, reduced number of patients, geographical dispersion, and so on). Ultimately, RDs' AI-mediated knowledge could significantly boost therapy development. Presently, there are AI approaches being used in RDs and this review aims to collect and summarize these advances. A section dedicated to congenital disorders of glycosylation (CDG), a particular group of orphan RDs that can serve as a potential study model for other common diseases and RDs, has also been included.info:eu-repo/semantics/publishedVersio

    Evaluating the Impact of Defeasible Argumentation as a Modelling Technique for Reasoning under Uncertainty

    Get PDF
    Limited work exists for the comparison across distinct knowledge-based approaches in Artificial Intelligence (AI) for non-monotonic reasoning, and in particular for the examination of their inferential and explanatory capacity. Non-monotonicity, or defeasibility, allows the retraction of a conclusion in the light of new information. It is a similar pattern to human reasoning, which draws conclusions in the absence of information, but allows them to be corrected once new pieces of evidence arise. Thus, this thesis focuses on a comparison of three approaches in AI for implementation of non-monotonic reasoning models of inference, namely: expert systems, fuzzy reasoning and defeasible argumentation. Three applications from the fields of decision-making in healthcare and knowledge representation and reasoning were selected from real-world contexts for evaluation: human mental workload modelling, computational trust modelling, and mortality occurrence modelling with biomarkers. The link between these applications comes from their presumptively non-monotonic nature. They present incomplete, ambiguous and retractable pieces of evidence. Hence, reasoning applied to them is likely suitable for being modelled by non-monotonic reasoning systems. An experiment was performed by exploiting six deductive knowledge bases produced with the aid of domain experts. These were coded into models built upon the selected reasoning approaches and were subsequently elicited with real-world data. The numerical inferences produced by these models were analysed according to common metrics of evaluation for each field of application. For the examination of explanatory capacity, properties such as understandability, extensibility, and post-hoc interpretability were meticulously described and qualitatively compared. Findings suggest that the variance of the inferences produced by expert systems and fuzzy reasoning models was higher, highlighting poor stability. In contrast, the variance of argument-based models was lower, showing a superior stability of its inferences across different system configurations. In addition, when compared in a context with large amounts of conflicting information, defeasible argumentation exhibited a stronger potential for conflict resolution, while presenting robust inferences. An in-depth discussion of the explanatory capacity showed how defeasible argumentation can lead to the construction of non-monotonic models with appealing properties of explainability, compared to those built with expert systems and fuzzy reasoning. The originality of this research lies in the quantification of the impact of defeasible argumentation. It illustrates the construction of an extensive number of non-monotonic reasoning models through a modular design. In addition, it exemplifies how these models can be exploited for performing non-monotonic reasoning and producing quantitative inferences in real-world applications. It contributes to the field of non-monotonic reasoning by situating defeasible argumentation among similar approaches through a novel empirical comparison

    Neural network supervised and reinforcement learning for neurological, diagnostic, and modeling problems

    Get PDF
    “As the medical world becomes increasingly intertwined with the tech sphere, machine learning on medical datasets and mathematical models becomes an attractive application. This research looks at the predictive capabilities of neural networks and other machine learning algorithms, and assesses the validity of several feature selection strategies to reduce the negative effects of high dataset dimensionality. Our results indicate that several feature selection methods can maintain high validation and test accuracy on classification tasks, with neural networks performing best, for both single class and multi-class classification applications. This research also evaluates a proof-of-concept application of a deep-Q-learning network (DQN) to model the impact of altered pH on respiratory rate, based on the Henderson-Hasselbalch equation. The model behaves as expected and is a preliminary example of how reinforcement learning can be utilized for medical modelling. Its sophistication will be improved in future works”--Abstract, page iv

    Performance Evaluation of Smart Decision Support Systems on Healthcare

    Get PDF
    Medical activity requires responsibility not only from clinical knowledge and skill but also on the management of an enormous amount of information related to patient care. It is through proper treatment of information that experts can consistently build a healthy wellness policy. The primary objective for the development of decision support systems (DSSs) is to provide information to specialists when and where they are needed. These systems provide information, models, and data manipulation tools to help experts make better decisions in a variety of situations. Most of the challenges that smart DSSs face come from the great difficulty of dealing with large volumes of information, which is continuously generated by the most diverse types of devices and equipment, requiring high computational resources. This situation makes this type of system susceptible to not recovering information quickly for the decision making. As a result of this adversity, the information quality and the provision of an infrastructure capable of promoting the integration and articulation among different health information systems (HIS) become promising research topics in the field of electronic health (e-health) and that, for this same reason, are addressed in this research. The work described in this thesis is motivated by the need to propose novel approaches to deal with problems inherent to the acquisition, cleaning, integration, and aggregation of data obtained from different sources in e-health environments, as well as their analysis. To ensure the success of data integration and analysis in e-health environments, it is essential that machine-learning (ML) algorithms ensure system reliability. However, in this type of environment, it is not possible to guarantee a reliable scenario. This scenario makes intelligent SAD susceptible to predictive failures, which severely compromise overall system performance. On the other hand, systems can have their performance compromised due to the overload of information they can support. To solve some of these problems, this thesis presents several proposals and studies on the impact of ML algorithms in the monitoring and management of hypertensive disorders related to pregnancy of risk. The primary goals of the proposals presented in this thesis are to improve the overall performance of health information systems. In particular, ML-based methods are exploited to improve the prediction accuracy and optimize the use of monitoring device resources. It was demonstrated that the use of this type of strategy and methodology contributes to a significant increase in the performance of smart DSSs, not only concerning precision but also in the computational cost reduction used in the classification process. The observed results seek to contribute to the advance of state of the art in methods and strategies based on AI that aim to surpass some challenges that emerge from the integration and performance of the smart DSSs. With the use of algorithms based on AI, it is possible to quickly and automatically analyze a larger volume of complex data and focus on more accurate results, providing high-value predictions for a better decision making in real time and without human intervention.A atividade médica requer responsabilidade não apenas com base no conhecimento e na habilidade clínica, mas também na gestão de uma enorme quantidade de informações relacionadas ao atendimento ao paciente. É através do tratamento adequado das informações que os especialistas podem consistentemente construir uma política saudável de bem-estar. O principal objetivo para o desenvolvimento de sistemas de apoio à decisão (SAD) é fornecer informações aos especialistas onde e quando são necessárias. Esses sistemas fornecem informações, modelos e ferramentas de manipulação de dados para ajudar os especialistas a tomar melhores decisões em diversas situações. A maioria dos desafios que os SAD inteligentes enfrentam advêm da grande dificuldade de lidar com grandes volumes de dados, que é gerada constantemente pelos mais diversos tipos de dispositivos e equipamentos, exigindo elevados recursos computacionais. Essa situação torna este tipo de sistemas suscetível a não recuperar a informação rapidamente para a tomada de decisão. Como resultado dessa adversidade, a qualidade da informação e a provisão de uma infraestrutura capaz de promover a integração e a articulação entre diferentes sistemas de informação em saúde (SIS) tornam-se promissores tópicos de pesquisa no campo da saúde eletrônica (e-saúde) e que, por essa mesma razão, são abordadas nesta investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à aquisição, limpeza, integração e agregação de dados obtidos de diferentes fontes em ambientes de e-saúde, bem como sua análise. Para garantir o sucesso da integração e análise de dados em ambientes e-saúde é importante que os algoritmos baseados em aprendizagem de máquina (AM) garantam a confiabilidade do sistema. No entanto, neste tipo de ambiente, não é possível garantir um cenário totalmente confiável. Esse cenário torna os SAD inteligentes suscetíveis à presença de falhas de predição que comprometem seriamente o desempenho geral do sistema. Por outro lado, os sistemas podem ter seu desempenho comprometido devido à sobrecarga de informações que podem suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de algoritmos de AM na monitoria e gestão de transtornos hipertensivos relacionados com a gravidez (gestação) de risco. O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global de sistemas de informação em saúde. Em particular, os métodos baseados em AM são explorados para melhorar a precisão da predição e otimizar o uso dos recursos dos dispositivos de monitorização. Ficou demonstrado que o uso deste tipo de estratégia e metodologia contribui para um aumento significativo do desempenho dos SAD inteligentes, não só em termos de precisão, mas também na diminuição do custo computacional utilizado no processo de classificação. Os resultados observados buscam contribuir para o avanço do estado da arte em métodos e estratégias baseadas em inteligência artificial que visam ultrapassar alguns desafios que advêm da integração e desempenho dos SAD inteligentes. Como o uso de algoritmos baseados em inteligência artificial é possível analisar de forma rápida e automática um volume maior de dados complexos e focar em resultados mais precisos, fornecendo previsões de alto valor para uma melhor tomada de decisão em tempo real e sem intervenção humana
    corecore