6,582 research outputs found

    Evolving connection weights between sensors and actuators in robots

    Get PDF
    International Symposium on Industrial Electronics. Guimaraes, 7-11 July 1997.In this paper, an evolution strategy (ES) is introduced, to learn reactive behaviour in autonomous robots. An ES is used to learn high-performance reactive behaviour for navigation and collisions avoidance. The learned behaviour is able to solve the problem in a dynamic environment; so, the learning process has proven the ability to obtain generalised behaviours. The robot starts without information about the right associations between sensors and actuators, and, from this situation, the robot is able to learn, through experience, to reach the highest adaptability grade to the sensors information. No subjective information about “how to accomplish the task” is included in the fitness function. A mini-robot Khepera has been used to test the learned behaviour

    Neural networks robot controller trained with evolution strategies

    Get PDF
    Congress on Evolutionary Computation. Washington, DC, 6-9 July 1999.Neural networks (NN) can be used as controllers in autonomous robots. The specific features of the navigation problem in robotics make generation of good training sets for the NN difficult. An evolution strategy (ES) is introduced to learn the weights of the NN instead of the learning method of the network. The ES is used to learn high performance reactive behavior for navigation and collision avoidance. No subjective information about “how to accomplish the task” has been included in the fitness function. The learned behaviors are able to solve the problem in different environments; therefore, the learning process has the proven ability to obtain a specialized behavior. All the behaviors obtained have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on the mini-robot, Khepera, has been used to learn each behavior
    • 

    corecore