603 research outputs found

    Automatic Handwritten Signature Verification System for Australian Passports

    Get PDF
    We present an automatic handwritten signature verification system to prevent identity fraud by verifying the authenticity of signatures on Australian passports. In this work, fuzzy modeling has been employed for developing a robust recognition system. The knowledge base consists of unique angle features extracted using the box method. These features are fuzzified by an exponential membership function, consisting of two structural parameters which have been devised to track even the minutest variations in a person's signature. The membership functions in turn constitute the weights in the Takagi-Sugeno (TS) model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. The efficacy of the proposed system has been tested on a large database of over 1200 signature images obtained from 40 volunteers achieving a recognition rate of more than 99%

    Gravitational Search For Designing A Fuzzy Rule-Based Classifiers For Handwritten Signature Verification

    Get PDF
    Handwritten signatures are used in authentication systems as a universal biometric identifier. Signature authenticity verification requires building and training a classifier. This paper describes a new approach to the verification of handwritten signatures by dynamic characteristics with a fuzzy rule-based classifier. It is suggested to use the metaheuristic Gravitational Search Algorithm for the selection of the relevant features and tuning fuzzy rule parameters. The efficiency of the approach was tested with an original dataset; the type II errors in finding the signature authenticity did not exceed 0.5% for the worst model and 0.08% for the best model

    Online Signature Verification: Present State of Technology

    Get PDF
    The way a person signs his or her name is known to be characteristic of that individual. Signatures are influenced by the physical and emotional conditions of a subject. A signature verification system must be able to detect forgeries, and, at the same time, reduce rejection of genuine signatures. Significant research has been conducted in feature extraction and selection for the application of on-line signature verification. All these features may be important for some problems, but for a given task, only a small subset of features is relevant. In addition to a reduction in storage requirements and computational cost, these may also lead to an improvement in general performance. On the other hand, selection of a feature subset requires a multi-criterion optimization function, e.g. the number of features and accuracy of classification. In this paper all these techniques are reviewed

    Non-english and non-latin signature verification systems: A survey

    Full text link
    Signatures continue to be an important biometric because they remain widely used as a means of personal verification and therefore an automatic verification system is needed. Manual signature-based authentication of a large number of documents is a difficult and time consuming task. Consequently for many years, in the field of protected communication and financial applications, we have observed an explosive growth in biometric personal authentication systems that are closely connected with measurable unique physical characteristics (e.g. hand geometry, iris scan, finger prints or DNA) or behavioural features. Substantial research has been undertaken in the field of signature verification involving English signatures, but to the best of our knowledge, very few works have considered non-English signatures such as Chinese, Japanese, Arabic etc. In order to convey the state-of-the-art in the field to researchers, in this paper we present a survey of non-English and non-Latin signature verification systems

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Off-line Arabic Character-Based Writer Identification – a Survey

    Get PDF
    Off-line writer identification requires transferring the text under consideration into an image file. This represents the only available solution to bring the printed materials to the electronic media. However, the transferring process causes the system to lose the temporal information of that text, which it can be gathered in  on-line writer identification. Various techniques have been implemented to achieve high identification rates. These techniques have tackled different aspects of the identification system. Importance of writer identification system is to help mainly in forensic fields, historical document analysis and  handwriting recognition system enhancement. Unfortunately, the Arabic writer identification system not achieves a satisfaction rate yet whereas certain process of features and classification still not recognized

    Off-line handwritten signature recognition by wavelet entropy and neural network

    Get PDF
    Handwritten signatures are widely utilized as a form of personal recognition. However, they have the unfortunate shortcoming of being easily abused by those who would fake the identification or intent of an individual which might be very harmful. Therefore, the need for an automatic signature recognition system is crucial. In this paper, a signature recognition approach based on a probabilistic neural network (PNN) and wavelet transform average framing entropy (AFE) is proposed. The system was tested with a wavelet packet (WP) entropy denoted as a WP entropy neural network system (WPENN) and with a discrete wavelet transform (DWT) entropy denoted as a DWT entropy neural network system (DWENN). Our investigation was conducted over several wavelet families and different entropy types. Identification tasks, as well as verification tasks, were investigated for a comprehensive signature system study. Several other methods used in the literature were considered for comparison. Two databases were used for algorithm testing. The best recognition rate result was achieved by WPENN whereby the threshold entropy reached 92%
    corecore