15,018 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Automatic Liver Segmentation Using an Adversarial Image-to-Image Network

    Full text link
    Automatic liver segmentation in 3D medical images is essential in many clinical applications, such as pathological diagnosis of hepatic diseases, surgical planning, and postoperative assessment. However, it is still a very challenging task due to the complex background, fuzzy boundary, and various appearance of liver. In this paper, we propose an automatic and efficient algorithm to segment liver from 3D CT volumes. A deep image-to-image network (DI2IN) is first deployed to generate the liver segmentation, employing a convolutional encoder-decoder architecture combined with multi-level feature concatenation and deep supervision. Then an adversarial network is utilized during training process to discriminate the output of DI2IN from ground truth, which further boosts the performance of DI2IN. The proposed method is trained on an annotated dataset of 1000 CT volumes with various different scanning protocols (e.g., contrast and non-contrast, various resolution and position) and large variations in populations (e.g., ages and pathology). Our approach outperforms the state-of-the-art solutions in terms of segmentation accuracy and computing efficiency.Comment: Accepted by MICCAI 201

    Introduction : approaches to genre

    Get PDF

    Trust beyond reputation: A computational trust model based on stereotypes

    Full text link
    Models of computational trust support users in taking decisions. They are commonly used to guide users' judgements in online auction sites; or to determine quality of contributions in Web 2.0 sites. However, most existing systems require historical information about the past behavior of the specific agent being judged. In contrast, in real life, to anticipate and to predict a stranger's actions in absence of the knowledge of such behavioral history, we often use our "instinct"- essentially stereotypes developed from our past interactions with other "similar" persons. In this paper, we propose StereoTrust, a computational trust model inspired by stereotypes as used in real-life. A stereotype contains certain features of agents and an expected outcome of the transaction. When facing a stranger, an agent derives its trust by aggregating stereotypes matching the stranger's profile. Since stereotypes are formed locally, recommendations stem from the trustor's own personal experiences and perspective. Historical behavioral information, when available, can be used to refine the analysis. According to our experiments using Epinions.com dataset, StereoTrust compares favorably with existing trust models that use different kinds of information and more complete historical information
    • …
    corecore