1,043 research outputs found

    Vehicle dynamics virtual sensing and advanced motion control for highly skilled autonomous vehicles

    Get PDF
    This dissertation is aimed at elucidating the path towards the development of a future generation of highly-skilled autonomous vehicles (HSAV). In brief, it is envisaged that future HSAVs will be able to exhibit advanced driving skills to maintain the vehicle within stable limits in spite of the driving conditions (limits of handling) or environmental adversities (e.g. low manoeuvrability surfaces). Current research lines on intelligent systems indicate that such advanced driving behaviour may be realised by means of expert systems capable of monitoring the current vehicle states, learning the road friction conditions, and adapting their behaviour depending on the identified situation. Such adaptation skills are often exhibited by professional motorsport drivers, who fine-tune their driving behaviour depending on the road geometry or tyre-friction characteristics. On this basis, expert systems incorporating advanced driving functions inspired by the techniques seen on highly-skilled drivers (e.g. high body slip control) are proposed to extend the operating region of autonomous vehicles and achieve high-level automation (e.g. manoeuvrability enhancement on low-adherence surfaces). Specifically, two major research topics are covered in detail in this dissertation to conceive these expert systems: vehicle dynamics virtual sensing and advanced motion control. With regards to the former, a comprehensive research is undertaken to propose virtual sensors able to estimate the vehicle planar motion states and learn the road friction characteristics from readily available measurements. In what concerns motion control, systems to mimic advanced driving skills and achieve robust path-following ability are pursued. An optimal coordinated action of different chassis subsystems (e.g. steering and individual torque control) is sought by the adoption of a centralised multi-actuated system framework. The virtual sensors developed in this work are validated experimentally with the Vehicle-Based Objective Tyre Testing (VBOTT) research testbed of JAGUAR LAND ROVER and the advanced motion control functions with the Multi-Actuated Ground Vehicle “DevBot” of ARRIVAL and ROBORACE.Diese Dissertation soll den Weg zur Entwicklung einer zukünftigen Generation hochqualifizierter autonomer Fahrzeuge (HSAV) aufzeigen. Kurz gesagt, es ist beabsichtigt, dass zukünftige HSAVs fortgeschrittene Fahrfähigkeiten aufweisen können, um das Fahrzeug trotz der Fahrbedingungen (Grenzen des Fahrverhaltens) oder Umgebungsbedingungen (z. B. Oberflächen mit geringer Manövrierfähigkeit) in stabilen Grenzen zu halten. Aktuelle Forschungslinien zu intelligenten Systemen weisen darauf hin, dass ein solches fortschrittliches Fahrverhalten mit Hilfe von Expertensystemen realisiert werden kann, die in der Lage sind, die aktuellen Fahrzeugzustände zu überwachen, die Straßenreibungsbedingungen kennenzulernen und ihr Verhalten in Abhängigkeit von der ermittelten Situation anzupassen. Solche Anpassungsfähigkeiten werden häufig von professionellen Motorsportfahrern gezeigt, die ihr Fahrverhalten in Abhängigkeit von der Straßengeometrie oder den Reifenreibungsmerkmalen abstimmen. Auf dieser Grundlage werden Expertensysteme mit fortschrittlichen Fahrfunktionen vorgeschlagen, die auf den Techniken hochqualifizierter Fahrer basieren (z. B. hohe Schlupfregelung), um den Betriebsbereich autonomer Fahrzeuge zu erweitern und eine Automatisierung auf hohem Niveau zu erreichen (z. B. Verbesserung der Manövrierfähigkeit auf niedrigem Niveau) -haftende Oberflächen). Um diese Expertensysteme zu konzipieren, werden zwei große Forschungsthemen in dieser Dissertation ausführlich behandelt: Fahrdynamik-virtuelle Wahrnehmung und fortschrittliche Bewegungssteuerung. In Bezug auf erstere wird eine umfassende Forschung durchgeführt, um virtuelle Sensoren vorzuschlagen, die in der Lage sind, die Bewegungszustände der Fahrzeugebenen abzuschätzen und die Straßenreibungseigenschaften aus leicht verfügbaren Messungen kennenzulernen. In Bezug auf die Bewegungssteuerung werden Systeme zur Nachahmung fortgeschrittener Fahrfähigkeiten und zum Erzielen einer robusten Wegfolgefähigkeit angestrebt. Eine optimale koordinierte Wirkung verschiedener Fahrgestellsubsysteme (z. B. Lenkung und individuelle Drehmomentsteuerung) wird durch die Annahme eines zentralisierten, mehrfach betätigten Systemrahmens angestrebt. Die in dieser Arbeit entwickelten virtuellen Sensoren wurden experimentell mit dem Vehicle-Based Objective Tyre Testing (VBOTT) - Prüfstand von JAGUAR LAND ROVER und den fortschrittlichen Bewegungssteuerungsfunktionen mit dem mehrfach betätigten Bodenfahrzeug ”DevBot” von ARRIVAL und ROBORACE validiert

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Fuzzy-Model-Based Output Feedback Steering Control in Autonomous Driving Subject to Actuator Constraints

    Get PDF

    Contributions to road safety: from abstractions and control theory to real solutions, discussion and evaluation

    Get PDF
    This manuscript aims to describe my career in the transportation domain, putting in evidence my contributions in different levels, as for example thesis advising, teaching, research animation and coordination, projects construction and participation in expert committees, among others, besides my scientific research itself. The goal, besides the HDR diploma itself, is to show very clearly, including to myself, this 'pack' of contributions in order to look for better contributions to the transportation and control communities or to other communities in the future, and also which research directions I will define to work on in the following. I obtained my PhD degree in the Laboratoire des Signaux et Systèmes - L2S 1 in collaboration with MIT, in 2001, having worked in a purely theoretical automatic control topic scarcely known in the literature - the adaptive control of systems with nonlinear parameterization problem. Arriving in 2002 as a permanent researcher to the former LCPC (Laboratoire Central des Ponts et haussées), now called IFSTTAR (Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux), I have been faced to real problems to solve in practice, and faced to the new community of transportation, with a completely different philosophy of work. I have nowadays this double vision - of the very applied transportation domain with concrete problems to be solved that touch the citizen every day, and the vision of a very rich high-level theoretical research in automatic control with powerful tools to solve the real problems, or on the other hand, with control problems that appear because of the need for new tools to solve the real problems. I consider this as an important characteristic for my future contributions. Besides the knowledge in Transportation itself, my eleven years of career in IFSTTAR gave me as well the following new features : 1. From the individual research, I have learned also how to coordinate work (in projects for example, as in the PReVAL sub-project of the European PReVENT project, in which I co-leaded one workpackage, or for research teams, as the control team of LIVIC, coordinated by myself from 2006 to 2009). I have also learned how to animate research (by coordinating research working groups or organizing scientific events and workshops - see for example the working group RSEI and the related scientific event below that I have organized in June 2012) and how to advise students. 2. Besides the double vision I have described above, the experience gave me also the acquisition of a quite multidisciplinary view of the problems in the domain. Firstly, arriving in LIVIC, in the frame of the French consortium ARCOS, I have worked for two years in close cooperation with experts in cognitive sciences (the PsyCoTech group from IRCCyN, Nantes) on designing driving assistance systems to a human driver. After this work, I have continued the collaboration with experts in human sciences within the PReVAL subproject of PReVENT on driving assistance systems evaluation and within the French ANR PARTAGE project, that I have constructed together with the PsyCoTec team of IRCCyN and leaded the IFSTTAR partner for one year. In a dition, through my participation in PReVENT at dirent levels (in two meetings of the Core Group, in PReVAL by co-leading the workpackage 3 on Technical Evaluation of ADAS - ADAS is the shortcut for Advanced Driving Assistance Systems - and in the SAFELANE subproject), I have learned many different aspects of ITS systems. I consider this as an add-on value for my 'pack of knowledge'. 3. What I call "from abstractions to real problems : coming back and forth to solve these real problems" has been matured in my mind, and I am very grateful to my students, with whom I have learned and that helped me in this maturing process. By this sentence, I mean, with a problem to solve in hands, and after building an abstraction, or a simplified view of the problem, and the design of a solution, how to apply it, and to come back again to the theory to change it and to come back to the practice, and so on. This is exactly one of the pillars of the NoE HYCON2, for making interact the theory with the application domains. 4. Considering a problem inserted into the societal context, or inserted within its related context, has been another maturing for myself that I consider very important, notably in the transportation domain, that represents a very complex context containing many different parameters, scenarios and objectives and in addition all the uncertainties linked to the human behavior. I think that it is very important to have a very large view of the context in which the specific problem we are treating is placed. Without this, one cannot say in most of the cases, from my point of view, that the problem is solved. This point will be discussed in Chapter 9.5. 5. Another point that I consider important and where I have been contributing recently is the road mapping work. The acquisition of the multidisciplinary knowledge and a larger view of the domain that I have mentioned in the preceding items, together with my theoretical knowledge in automatic control, allowed myself to start contributing to theroad mapping work in Transportation (through my participation in the imobility forum, in HYCON2 and the in the support action T-Area-SoS on Systems of Systems - all these actions to give advice to the European Commission on the priority areas to be considered in the new Calls, notably in the frame of the H2020 program). I had also the pleasure of opening again books and thesis that I had studied in my PhD work, this time now for advising students in the frame of other very different problems. The very beautiful thesis of Mikael Johansson, Lund University, on piecewise linear systems stability theory is an example. My previous study on switched systems, and the implication of switched Lyapunov functions on stability helped me also in advising my students (Post-Docs, PhD, and M.Sc. students), this time for real applications, with very interesting results blooming up from their work. I realize also that the experience that I have described in the five items above must be put in favor of students since this kind of knowledge cannot be found in the books. Concluding, in these last eleven years, from 2002 to 2013, I could bring to the scientic community and to my students a set of contributions of different kinds. I will try to make clear these contributions for the reader in the next two chapters (written in English and in French). This document is organized in the following way : Part II contains my complete curriculum vitae (in french) where all these contributions will be described in detail. Part III contains then the scientific contributions of the manuscript. What I aim in this chapter is to describe, but further, to analyze them with a distanced look and providing a critical view, announcing perspectives, and placing and discussing the obtained results in the societal context. This is in straight relation with item 4 above. Also, I prefer to adopt, as far as possible, a form comprehensible to the non-automatic control expert, with, as far as possible as well, qualitative explanations and then appropriated references containing the theorems and the definitions corresponding to the qualitative explanations will be provided. In the case it is necessary, they are provided within the text. The Part III is structured in the following chapters. Chapter 8 contains an overview of the global transportation scenario with the associated challenges and a description of the driving assistance systems context. Chapter 9 contains my scientific contributions. These include my research results, my contributions in students advising, in the coordination of research groups, and the collaborative works. It is structured in 3 sections : Section 9.1 introduces what will be the greed for a part of the main contributions, that are described in Sections 9.2 and 9.3. Section 9.1 is also dedicated to showing to the reader how theory and abstractions can be very important for solving real problems. Chapter 9.4 describes other contributions that are the result of collaborative works. A discussion from a multidisciplinary view is provided in Chapter 9.5 based on a survey paper of myself. Chapter 10 will be finally dedicated to the perspectives and the general conclusions. Then last Part contains as annexes a selection of the publications that I consider the most illustrative of my contributions described in Chapter 9. Finally, since the described work is in the intersection of two communities - the transportation and the control theory communities - I decided to write a part of the document dedicated to the non control experts readers. This is Part VI of the document whose aim is to provide some fundamental notions on control theory in a very simple qualitative description whose understanding will help the different readers to understand the contributions

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Cyber-Physical Embedded Systems with Transient Supervisory Command and Control: A Framework for Validating Safety Response in Automated Collision Avoidance Systems

    Get PDF
    The ability to design and engineer complex and dynamical Cyber-Physical Systems (CPS) requires a systematic view that requires a definition of level of automation intent for the system. Since CPS covers a diverse range of systemized implementations of smart and intelligent technologies networked within a system of systems (SoS), the terms “smart” and “intelligent” is frequently used in describing systems that perform complex operations with a reduced need of a human-agent. The difference between this research and most papers in publication on CPS is that most other research focuses on the performance of the CPS rather than on the correctness of its design. However, by using both human and machine agency at different levels of automation, or autonomy, the levels of automation have profound implications and affects to the reliability and safety of the CPS. The human-agent and the machine-agent are in a tidal lock of decision-making using both feedforward and feedback information flows in similar processes, where a transient shift within the level of automation when the CPS is operating can have undesired consequences. As CPS systems become more common, and higher levels of autonomy are embedded within them, the relationship between human-agent and machine-agent also becomes more complex, and the testing methodologies for verification and validation of performance and correctness also become more complex and less clear. A framework then is developed to help the practitioner to understand the difficulties and pitfalls of CPS designs and provides guidance to test engineering design of soft computational systems using combinations of modeling, simulation, and prototyping

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Recognition of Traffic Situations based on Conceptual Graphs

    Get PDF
    This work investigates the suitability of conceptual graphs for situation recognition. The scene graph is created in the form of a conceptual graph according to the concept type hierarchy, relation type hierarchy, rules and constraints using the previously obtained information about objects and lanes. The graphs are then matched using projection with the query conceptual graph, which represents the situation. The functionality of the model is shown on the real traffic situations

    Fractional Order State Feedback Control for Improved Lateral Stability of Semi-Autonomous Commercial Heavy Vehicles

    Get PDF
    With the growing development of autonomous and semi-autonomous large commercial heavy vehicles, the lateral stability control of articulated vehicles have caught the attention of researchers recently. Active vehicle front steering (AFS) can enhance the handling performance and stability of articulated vehicles for an emergency highway maneuver scenario. However, with large vehicles such tractor-trailers, the system becomes more complex to control and there is an increased occurrence of instabilities. This research investigates a new control scheme based on fractional calculus as a technique that ensures lateral stability of articulated large heavy vehicles during evasive highway maneuvering scenarios. The control method is first implemented to a passenger vehicle model with 2-axles based on the well-known “bicycle model”. The model is then extended and applied onto larger three-axle commercial heavy vehicles in platooning operations. To validate the proposed new control algorithm, the system is linearized and a fractional order PI state feedback control is developed based on the linearized model. Then using Matlab/Simulink, the developed fractional-order linear controller is implemented onto the non-linear tractor-trailer dynamic model. The tractor-trailer system is modeled based on the conventional integer-order techniques and then a non-integer linear controller is developed to control the system. Overall, results confirm that the proposed controller improves the lateral stability of a tractor-trailer response time by 20% as compared to a professional truck driver during an evasive highway maneuvering scenario. In addition, the effects of variable truck cargo loading and longitudinal speed are evaluated to confirm the robustness of the new control method under a variety of potential operating conditions
    • …
    corecore