4,462 research outputs found

    Agents that learn how to generate arguments from other agents

    Get PDF
    Learning how to argue is a key ability for a negotiator agent. In this paper, we propose an approach that allows agents to learn how to build arguments by observing how other agents argue in a negotiation context. Particularly, our approach enables the agent to infer the rulesfor argument generation that other agents apply to build their arguments. To carry out this goal, the agent stores the arguments uttered by other agents and the facts of the negotiation context where each argument is uttered. Then, an algorithm for fuzzy generalized association rules is applied to discover the desired rules. This kind of algorithm allows us (a) to obtain general rules that can be applied to dierent negotiation contexts; and (b) to deal with the uncertainty about the knowledge of what facts of the context are taken into account by the agents. The experimental results showed that it is possible to infer argument generation rules from a reduced number of observed arguments.Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentin

    A Mining Algorithm under Fuzzy Taxonomic Structures

    Get PDF
    Most conventional data-mining algorithms identify the relationships among transactions using binary values and find rules at a single concept level. Transactions with quantitative values and items with taxonomic relations are, however, commonly seen in real-world applications. Besides, the taxonomic structures may also be represented in a fuzzy way. This paper thus proposes a fuzzy multiple-level mining algorithm for extracting fuzzy association rules under given fuzzy taxonomic structures. The proposed algorithm adopts a top-down progressively deepening approach to finding large itemsets. It integrates fuzzy-set concepts, data-mining technologies and multiple-level fuzzy taxonomy to find fuzzy association rules from given transaction data sets. Each item uses only the linguistic term with the maximum cardinality in later mining processes, thus making the number of fuzzy regions to be processed the same as the number of the original items. The algorithm therefore focuses on the most important linguistic terms for reduced time complexit

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Encapsulation of Soft Computing Approaches within Itemset Mining a A Survey

    Get PDF
    Data Mining discovers patterns and trends by extracting knowledge from large databases. Soft Computing techniques such as fuzzy logic, neural networks, genetic algorithms, rough sets, etc. aims to reveal the tolerance for imprecision and uncertainty for achieving tractability, robustness and low-cost solutions. Fuzzy Logic and Rough sets are suitable for handling different types of uncertainty. Neural networks provide good learning and generalization. Genetic algorithms provide efficient search algorithms for selecting a model, from mixed media data. Data mining refers to information extraction while soft computing is used for information processing. For effective knowledge discovery from large databases, both Soft Computing and Data Mining can be merged. Association rule mining (ARM) and Itemset mining focus on finding most frequent item sets and corresponding association rules, extracting rare itemsets including temporal and fuzzy concepts in discovered patterns. This survey paper explores the usage of soft computing approaches in itemset utility mining

    Data mining by means of generalized patterns

    Get PDF
    The thesis is mainly focused on the study and the application of pattern discovery algorithms that aggregate database knowledge to discover and exploit valuable correlations, hidden in the analyzed data, at different abstraction levels. The aim of the research effort described in this work is two-fold: the discovery of associations, in the form of generalized patterns, from large data collections and the inference of semantic models, i.e., taxonomies and ontologies, suitable for driving the mining proces

    Expressive generalized itemsets

    Get PDF
    Generalized itemset mining is a powerful tool to discover multiple-level correlations among the analyzed data. A taxonomy is used to aggregate data items into higher-level concepts and to discover frequent recurrences among data items at different granularity levels. However, since traditional high-level itemsets may also represent the knowledge covered by their lower-level frequent descendant itemsets, the expressiveness of high-level itemsets can be rather limited. To overcome this issue, this article proposes two novel itemset types, called Expressive Generalized Itemset (EGI) and Maximal Expressive Generalized Itemset (Max-EGI), in which the frequency of occurrence of a high-level itemset is evaluated only on the portion of data not yet covered by any of its frequent descendants. Specifically, EGI s represent, at a high level of abstraction, the knowledge associated with sets of infrequent itemsets, while Max-EGIs compactly represent all the infrequent descendants of a generalized itemset. Furthermore, we also propose an algorithm to discover Max-EGIs at the top of the traditionally mined itemsets. Experiments, performed on both real and synthetic datasets, demonstrate the effectiveness, efficiency, and scalability of the proposed approac
    • …
    corecore