632 research outputs found

    The Hyperdimensional Transform: a Holographic Representation of Functions

    Full text link
    Integral transforms are invaluable mathematical tools to map functions into spaces where they are easier to characterize. We introduce the hyperdimensional transform as a new kind of integral transform. It converts square-integrable functions into noise-robust, holographic, high-dimensional representations called hyperdimensional vectors. The central idea is to approximate a function by a linear combination of random functions. We formally introduce a set of stochastic, orthogonal basis functions and define the hyperdimensional transform and its inverse. We discuss general transform-related properties such as its uniqueness, approximation properties of the inverse transform, and the representation of integrals and derivatives. The hyperdimensional transform offers a powerful, flexible framework that connects closely with other integral transforms, such as the Fourier, Laplace, and fuzzy transforms. Moreover, it provides theoretical foundations and new insights for the field of hyperdimensional computing, a computing paradigm that is rapidly gaining attention for efficient and explainable machine learning algorithms, with potential applications in statistical modelling and machine learning. In addition, we provide straightforward and easily understandable code, which can function as a tutorial and allows for the reproduction of the demonstrated examples, from computing the transform to solving differential equations

    Representation of maxitive measures: an overview

    Full text link
    Idempotent integration is an analogue of Lebesgue integration where σ\sigma-maxitive measures replace σ\sigma-additive measures. In addition to reviewing and unifying several Radon--Nikodym like theorems proven in the literature for the idempotent integral, we also prove new results of the same kind.Comment: 40 page

    Fuzzy Stochastic Differential Equations Driven by Semimartingales-Different Approaches

    Get PDF
    The first aim of the paper is to present a survey of possible approaches for the study of fuzzy stochastic differential or integral equations. They are stochastic counterparts of classical approaches known from the theory of deterministic fuzzy differential equations. For our aims we present first a notion of fuzzy stochastic integral with a semimartingale integrator and its main properties. Next we focus on different approaches for fuzzy stochastic differential equations. We present the existence of fuzzy solutions to such equations as well as their main properties. In the first approach we treat the fuzzy equation as an abstract relation in the metric space of fuzzy sets over the space of square integrable random vectors. In the second one the equation is interpreted as a system of stochastic inclusions. Finally, in the last section we discuss fuzzy stochastic integral equations with solutions being fuzzy stochastic processes. In this case the notion of the stochastic Itô’s integral in the equation is crisp; that is, it has single-valued level sets. The second aim of this paper is to show that there is no extension to more general diffusion terms

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515
    • …
    corecore