3,345 research outputs found

    Commonsense knowledge representation and reasoning with fuzzy neural networks

    Get PDF
    This paper highlights the theory of common-sense knowledge in terms of representation and reasoning. A connectionist model is proposed for common-sense knowledge representation and reasoning. A generic fuzzy neuron is employed as a basic element for the connectionist model. The representation and reasoning ability of the model is described through examples

    How much of commonsense and legal reasoning is formalizable? A review of conceptual obstacles

    Get PDF
    Fifty years of effort in artificial intelligence (AI) and the formalization of legal reasoning have produced both successes and failures. Considerable success in organizing and displaying evidence and its interrelationships has been accompanied by failure to achieve the original ambition of AI as applied to law: fully automated legal decision-making. The obstacles to formalizing legal reasoning have proved to be the same ones that make the formalization of commonsense reasoning so difficult, and are most evident where legal reasoning has to meld with the vast web of ordinary human knowledge of the world. Underlying many of the problems is the mismatch between the discreteness of symbol manipulation and the continuous nature of imprecise natural language, of degrees of similarity and analogy, and of probabilities

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    Language, logic and ontology: uncovering the structure of commonsense knowledge

    Get PDF
    The purpose of this paper is twofold: (i) we argue that the structure of commonsense knowledge must be discovered, rather than invented; and (ii) we argue that natural language, which is the best known theory of our (shared) commonsense knowledge, should itself be used as a guide to discovering the structure of commonsense knowledge. In addition to suggesting a systematic method to the discovery of the structure of commonsense knowledge, the method we propose seems to also provide an explanation for a number of phenomena in natural language, such as metaphor, intensionality, and the semantics of nominal compounds. Admittedly, our ultimate goal is quite ambitious, and it is no less than the systematic ‘discovery’ of a well-typed ontology of commonsense knowledge, and the subsequent formulation of the longawaited goal of a meaning algebra

    A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.Comment: 39 pages, 3 figure

    Commonsense knowledge-based face detection

    Get PDF
    A connectionist model is presented for commonsense knowledge representation and reasoning. The representation and reasoning ability of the model is described through examples. The commonsense knowledge base is employed to develop a human face detection system. The system consists of three stages: preprocessing, face-components extraction, and final decision-making. A neural network-based algorithm is utilised to extract face components. Five networks are trained to detect mouth, nose, eyes, and full face. The detected face components and their corresponding possibility degrees allow the knowledge base to locate faces in the image and generate a membership degree for the detected faces within the face class. The experimental results obtained using this method are presented

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Applying spatial reasoning to topographical data with a grounded geographical ontology

    Get PDF
    Grounding an ontology upon geographical data has been pro- posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an efficient and easy to understand manner. Further, we show how this system can be implemented in co-ordination with segmented data to reason abou
    corecore