10,450 research outputs found

    A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.Comment: 39 pages, 3 figure

    Commonsense knowledge representation and reasoning with fuzzy neural networks

    Get PDF
    This paper highlights the theory of common-sense knowledge in terms of representation and reasoning. A connectionist model is proposed for common-sense knowledge representation and reasoning. A generic fuzzy neuron is employed as a basic element for the connectionist model. The representation and reasoning ability of the model is described through examples

    A formal approach to vague expressions with indexicals

    Get PDF
    In this paper, we offer a formal approach to the scantily investigated problem of vague expressions with indexicals, in particular including the spatial indexical `here' and the temporal indexical `now'. We present two versions of an adaptive fuzzy logic extended with an indexical, formally expressed by a modifier as a function that applies to predicative formulas. In the first version, such an operator is applied to non-vague predicates. The modified formulas may have a fuzzy truth value and fit into a Sorites paradox. We use adaptive fuzzy logics as a reasoning tool to address such a paradox. The modifier enables us to offer an adequate explication of the dynamic reasoning process. In the second version, a different result is obtained for an indexical applied to a formula with a possibly vague predicate, where the resulting modified formula has a crisp value and does not add up to a Sorites paradox

    Subjects, Models, Languages, Transformations

    Get PDF
    Discussions about model-driven approaches tend to be hampered by terminological confusion. This is at least partially caused by a lack of formal precision in defining the basic concepts, including that of "model" and "thing being modelled" - which we call subject in this paper. We propose a minimal criterion that a model should fulfill: essentially, it should come equipped with a clear and unambiguous membership test; in other words, a notion of which subjects it models. We then go on to discuss a certain class of models of models that we call languages, which apart from defining their own membership test also determine membership of their members. Finally, we introduce transformations on each of these layers: a subject transformation is essentially a pair of subjects, a model transformation is both a pair of models and a model of pairs (namely, subject transformations), and a language transformation is both a pair of languages and a language of model transformations. We argue that our framework has the benefits of formal precision (there can be no doubt about whether something satifies our criteria for being a model, a language or a transformation) and minimality (it is hard to imagine a case of modelling or transformation not having the characterstics that we propose)

    Probability and nonclassical logic

    Get PDF

    Study and development of techniques for automatic control of remote manipulators

    Get PDF
    An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world

    Conceptual Spaces in Object-Oriented Framework

    Get PDF
    The aim of this paper is to show that the middle level of mental representations in a conceptual spaces framework is consistent with the OOP paradigm. We argue that conceptual spaces framework together with vague prototype theory of categorization appears to be the most suitable solution for modeling the cognitive apparatus of humans, and that the OOP paradigm can be easily and intuitively reconciled with this framework. First, we show that the prototypebased OOP approach is consistent with Gärdenfors’ model in terms of structural coherence. Second, we argue that the product of cloning process in a prototype-based model is in line with the structure of categories in Gärdenfors’ proposal. Finally, in order to make the fuzzy object-oriented model consistent with conceptual space, we demonstrate how to define membership function in a more cognitive manner, i.e. in terms of similarity to prototype
    corecore