11,812 research outputs found

    Robust Adaptive Fuzzy Control for a Class of Uncertain MIMO Nonlinear Systems with Input Saturation

    Get PDF
    This paper studies the robust adaptive fuzzy control design problem for a class of uncertain multiple-input and multiple-output (MIMO) nonlinear systems in the presence of actuator amplitude and rate saturation. In the control scheme, fuzzy logic systems are used to approximate unknown nonlinear systems. To compensate the effect of input saturations, an auxiliary system is constructed and the actuator saturations then can be augmented into the controller. The modified tracking error is introduced and used in fuzzy parameter update laws. Furthermore, in order to deal with fuzzy approximation errors for unknown nonlinear systems and external disturbances, a robust compensation control is designed. It is proved that the closed-loop system obtains H∞ tracking performance through Lyapunov analysis. Steady and transient modified tracking errors are analyzed and the bound of modified tracking errors can be adjusted by tuning certain design parameters. The proposed control scheme is applicable to uncertain nonlinear systems not only with actuator amplitude saturation, but also with actuator amplitude and rate saturation. Detailed simulation results of a rigid body satellite attitude control system in the presence of parametric uncertainties, external disturbances, and control input constraints have been presented to illustrate the effectiveness of the proposed control scheme

    Global Feed-Forward Adaptive Fuzzy Control of Uncertain MIMO Nonlinear Systems

    Get PDF
    This study proposes a novel adaptive control approach using a feedforward Takagi-Sugeno (TS) fuzzy approximator for a class of highly unknown multi-input multi-output (MIMO) nonlinear plants. First of all, the design concept, namely, feedforward fuzzy approximator (FFA) based control, is introduced to compensate the unknown feedforward terms required during steady state via a forward TS fuzzy system which takes the desired commands as the input variables. Different from the traditional fuzzy approximation approaches, this scheme allows easier implementation and drops the boundedness assumption on fuzzy universal approximation errors. Furthermore, the controller is synthesized to assure either the disturbance attenuation or the attenuation of both disturbances and estimated fuzzy parameter errors or globally asymptotic stable tracking. In addition, all the stability is guaranteed from a feasible gain solution of the derived linear matrix inequality (LMI). Meanwhile, the highly uncertain holonomic constrained systems are taken as applications with either guaranteed robust tracking performances or asymptotic stability in a global sense. It is demonstrated that the proposed adaptive control is easily and straightforwardly extended to the robust TS FFA-based motion/force tracking controller. Finally, two planar robots transporting a common object is taken as an application example to show the expected performance. The comparison between the proposed and traditional adaptive fuzzy control schemes is also performed in numerical simulations. Keywords: Adaptive control; Takagi-Sugeno (TS) fuzzy system; holonomic systems; motion/force control

    Design of Adaptive Sliding Mode Fuzzy Control for Robot Manipulator Based on Extended Kalman Filter

    Get PDF
    In this work, a new adaptive motion control scheme for robust performance control of robot manipulators is presented. The proposed scheme is designed by combining the fuzzy logic control with the sliding mode control based on extended Kalman filter. Fuzzy logic controllers have been used successfully in many applications and were shown to be superior to the classical controllers for some nonlinear systems. Sliding mode control is a powerful approach for controlling nonlinear and uncertain systems. It is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances, provided that the bounds of these uncertainties and disturbances are known. We have designed a new adaptive Sliding Mode Fuzzy Control (SMFC) method that requires only position measurements. These measurements and the input torques are used in an extended Kalman filter (EKF) to estimate the inertial parameters of the full nonlinear robot model as well as the joint positions and velocities. These estimates are used by the SMFC to generate the input torques. The combination of the EKF and the SMFC is shown to result in a stable adaptive control scheme called trajectory-tracking adaptive robot with extended Kalman (TAREK) method. The theory behind TAREK method provides clear guidelines on the selection of the design parameters for the controller. The proposed controller is applied to a two-link robot manipulator. Computer simulations show the robust performance of the proposed scheme

    Robust Adaptive Fuzzy Control of Uncertain Nonlinear Systems with Unknown Dead-Zone

    Get PDF
    Abstract This paper presents a robust adaptive fuzzy control scheme for a class of uncertain nonlinear systems containing an unknown dead-zone. Dead-zone characteristics are quite commonly encountered in actuators, such as hydraulic and pneumatic valves, electric servomotors, and electronic circuits, etc. Therefore, by using a description of a dead-zone and by exploring the properties of this dead-zone model intuitively and mathematically, a robust adaptive fuzzy control method is presented without constructing the dead-zone inverse. The unknown nonlinear functions of the controlled system are approximated by the fuzzy logic system according to some adaptive laws. By means of Lyapunov stability theorem, the proposed robust adaptive fuzzy control scheme can guarantee the robust stability of the whole closed-loop system with an unknown dead-zone in the actuator and obtain good tracking performance as well. Finally, an example and simulation results are illustrated to demonstrate the validity of the proposed method

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore