10,389 research outputs found

    Possibilistic and fuzzy clustering methods for robust analysis of non-precise data

    Get PDF
    This work focuses on robust clustering of data affected by imprecision. The imprecision is managed in terms of fuzzy sets. The clustering process is based on the fuzzy and possibilistic approaches. In both approaches the observations are assigned to the clusters by means of membership degrees. In fuzzy clustering the membership degrees express the degrees of sharing of the observations to the clusters. In contrast, in possibilistic clustering the membership degrees are degrees of typicality. These two sources of information are complementary because the former helps to discover the best fuzzy partition of the observations while the latter reflects how well the observations are described by the centroids and, therefore, is helpful to identify outliers. First, a fully possibilistic k-means clustering procedure is suggested. Then, in order to exploit the benefits of both the approaches, a joint possibilistic and fuzzy clustering method for fuzzy data is proposed. A selection procedure for choosing the parameters of the new clustering method is introduced. The effectiveness of the proposal is investigated by means of simulated and real-life data

    Final solution to the problem of relating a true copula to an imprecise copula

    Full text link
    In this paper we solve in the negative the problem proposed in this journal (I. Montes et al., Sklar's theorem in an imprecise setting, Fuzzy Sets and Systems, 278 (2015), 48-66) whether an order interval defined by an imprecise copula contains a copula. Namely, if C\mathcal{C} is a nonempty set of copulas, then C=inf{C}CC\underline{C} = \inf\{C\}_{C\in\mathcal{C}} and C=sup{C}CC\overline{C}= \sup\{C\}_{C\in\mathcal{C}} are quasi-copulas and the pair (C,C)(\underline{C},\overline{C}) is an imprecise copula according to the definition introduced in the cited paper, following the ideas of pp-boxes. We show that there is an imprecise copula (A,B)(A,B) in this sense such that there is no copula CC whatsoever satisfying ACBA \leqslant C\leqslant B. So, it is questionable whether the proposed definition of the imprecise copula is in accordance with the intentions of the initiators. Our methods may be of independent interest: We upgrade the ideas of Dibala et al. (Defects and transformations of quasi-copulas, Kybernetika, 52 (2016), 848-865) where possibly negative volumes of quasi-copulas as defects from being copulas were studied.Comment: 20 pages; added Conclusion, added some clarifications in proofs, added some explanations at the beginning of each section, corrected typos, results remain the sam

    Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System

    Full text link
    A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175

    Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps

    Full text link
    A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI 90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0175

    Fuzzy ART: An Adaptive Resonance Algorithm for Rapid, Stable Classification of Analog Patterns

    Full text link
    The Fuzzy ART system introduced herein incorporates computations from fuzzy set theory into ART 1. For example, the intersection (n) operator used in ART 1 learning is replaced by the MIN operator (A) of fuzzy set theory. Fuzzy ART reduces to ART 1 in response to binary input vectors, but can also learn stable categories in response to analog input vectors. In particular, the MIN operator reduces to the intersection operator in the binary case. Learning is stable because all adaptive weights can only decrease in time. A preprocessing step, called complement coding, uses on-cell and off-cell responses to prevent category proliferation. Complement coding normalizes input vectors while preserving the amplitudes of individual feature activations.Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088); BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530

    SymScal: symbolic multidimensional scaling of interval dissimilarities

    Get PDF
    Multidimensional scaling aims at reconstructing dissimilaritiesbetween pairs of objects by distances in a low dimensional space.However, in some cases the dissimilarity itself is unknown, but therange of the dissimilarity is given. Such fuzzy data fall in thewider class of symbolic data (Bock and Diday, 2000).Denoeux and Masson (2000) have proposed to model an intervaldissimilarity by a range of the distance defined as the minimum andmaximum distance between two rectangles representing the objects. Inthis paper, we provide a new algorithm called SymScal that is basedon iterative majorization. The advantage is that each iteration isguaranteed to improve the solution until no improvement is possible.In a simulation study, we investigate the quality of thisalgorithm. We discuss the use of SymScal on empirical dissimilarityintervals of sounds.iterative majorization;multidimensional scaling;symbolic data analysis;distance smoothing

    Application of a Mamdani-type fuzzy rule-based system to segment periventricular cerebral veins in susceptibility-weighted images

    Get PDF
    This paper presents an algorithm designed to segment veins in the periventricular region of the brain in susceptibility-weighted magnetic resonance images. The proposed algorithm is based on a Mamdani-type fuzzy rule-based system that enables enhancement of veins within periventricular regions of interest as the first step. Segmentation is achieved after determining the cut-off value providing the best trade-off between sensitivity and specificity to establish the suitability of each pixel to belong to a cerebral vein. Performance of the algorithm in susceptibility-weighted images acquired in healthy volunteers showed very good segmentation, with a small number of false positives. The results were not affected by small changes in the size and location of the regions of interest. The algorithm also enabled detection of differences in the visibility of periventricular veins between healthy subjects and multiple sclerosis patients. © Springer International Publishing Switzerland 2016.Postprint (author's final draft
    corecore