763 research outputs found

    On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor network

    Get PDF
    In a wireless sensor network (WSN), sensor nodes collect data from the environment and transfer this data to an end user through multi-hop communication. This results in high energy dissipation of the devices. Thus, balancing of energy consumption is a major concern in such kind of network. Appropriate cluster head (CH) selection may provide to be an efficient way to reduce the energy dissipation and prolonging the network lifetime in WSN. This paper has adopted the concept of fuzzy if-then rules to choose the cluster head based on certain fuzzy descriptors. To optimise the fuzzy membership functions, Particle Swarm Optimisation (PSO) has been used to improve their ranges. Moreover, recent study has confirmed that the introduction of a mobile collector in a network which collects data through short-range communications also aids in high energy conservation. In this work, the network is divided into clusters and a mobile collector starts from the static sink or base station and moves through each of these clusters and collect data from the chosen cluster heads in a single-hop fashion. Mobility based on Ant-Colony Optimisation (ACO) has already proven to be an efficient method which is utilised in this work. Additionally, instead of performing clustering in every round, CH is selected on demand. The performance of the proposed algorithm has been compared with some existing clustering algorithms. Simulation results show that the proposed protocol is more energy-efficient and provides better packet delivery ratio as compared to the existing protocols for data collection obtained through Matlab Simulations

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    Secure Clustering and Routing using Adaptive Decision and Levy Flight based Artificial Hummingbird Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) receives huge attention from various remote monitoring applications because of its self configuration, ease of maintenance and scalability features. But, the sensors of the WSNs vulnerable to malicious attackers due to the energy constraint, open deployment and lack of centralized administration. Therefore, the secure routing is established for achieving the secure and reliable data broadcasting in the WSN. In this paper, an Adaptive Decision and Levy Flight based Artificial Hummingbird Algorithm (ADLFAHA) is proposed for performing an effective secure routing under the blackhole and Denial of Service (DoS) attacks. The ADLFAHA is developed to perform Secure Cluster Head (SCH) selection and secure path identification according to the trust, energy, load and communication cost. An adaptive decision strategy and levy flight incorporated in the ADLFAHA is used to enhance exploration and achieves global optimization capacity that helps to enhance the searching process. Moreover, the developed ADLFAHA helps to avoid the congestion among the nodes by balancing the load in network. The ADLFAHA is analyzed using End to End Delay (EED), throughput, Packet Delivery Ratio (PDR) and overhead. The existing researches such as Firebug Optimized Modified Bee Colony (FOMBC) and Lightweight Secure Routing (LSR) are used to compare the ADLFAHA. The PDR of the ADLFAHA for the simulation time of 100 s is 98.21 that is high than the FOMBC and LSR

    Trust Score based Optimized Cluster Routing (TSOCR) approach for Enhancing the Lifetime of Wireless Sensor Networks

    Get PDF
    Energy efficiency is the most significant obstacle that Wireless Sensor Networks (WSN) must overcome, and the desire for solutions that maximize energy efficiency will never go away. There are a variety of methods that can be utilized to improve energy efficiency, with data transmission as the primary driver of maximum energy consumption. The transmission of data from the source to destination nodes uses more energy. When the transmission of data is handled better, the energy efficiency is improved and the lifetime of the network is increased. The purpose of this research is to propose an Trust Score based Optimized Cluster Routing (TSOCR)  scheme for WSNs, which is based on Whale Optimization Algorithm (WOA). A total trust score is derived by combining the results of computing three distinct trust scores, such as the direct, indirect, and the most recent trust score. The path that has the highest trust score is chosen as the route and employed for data transmission. The effectiveness of the work is evaluated by looking at factors such as the rate of packet delivery, the latency, the amount of energy consumed and the lifetime of the network

    Secure cluster-based routing using multi objective-trust centric artificial algae algorithm for wireless sensor network

    Get PDF
    Nowadays, wireless sensor network (WSN) is developed as a key technology to observe and track applications over a wide range. However, energy consumption and security are considered as important issues in the WSN. In this paper, the multi objective-trust centric artificial algae algorithm (M-TCAAA) is proposed to accomplish a secure broadcasting over the WSN. The proposed M-TCAAA is used to choose the secure cluster head (SCH) as well as routing path, based on the distinct fitness measures such as trust, communication cost, residual energy, and node degree. Hence, the M-TCAAA is used to ensure a secure data transmission while decreasing the energy consumed by the nodes. The performance of the M-TCAAA is analyzed by means of energy consumption, packet delivery ratio (PDR), throughput, end to end delay (EED), normalized routing load (NRL), and network lifetime. The existing researches namely energy aware trust and opportunity-based routing with mobile nodes (ETOR-MN), grey wolf updated whale optimization (GUWO), secure cluster-based routing protocol (SCBRP), secure routing protocol based on multi-objective ant-colony-optimization (SRPMA) and multi objective trust aware hybrid optimization (MOTAHO) are considered for evaluating the M-TCAAA. The PDR of the M-TCAAA for 100 nodes is 99.87%, which is larger than the ETOR-MN, GUWO, SRPMA and MOTAHO

    A genetic algorithm-based energy-aware multi-hop clustering scheme for heterogeneous wireless sensor networks

    Get PDF
    Background: The energy-constrained heterogeneous nodes are the most challenging wireless sensor networks (WSNs) for developing energy-aware clustering schemes. Although various clustering approaches are proven to minimise energy consumption and delay and extend the network lifetime by selecting optimum cluster heads (CHs), it is still a crucial challenge.Methods: This article proposes a genetic algorithm-based energy-aware multi-hop clustering (GA-EMC) scheme for heterogeneous WSNs (HWSNs). In HWSNs, all the nodes have varying initial energy and typically have an energy consumption restriction. A genetic algorithm determines the optimal CHs and their positions in the network. The fitness of chromosomes is calculated in terms of distance, optimal CHs, and the node's residual energy. Multi-hop communication improves energy efficiency in HWSNs. The areas near the sink are deployed with more supernodes far away from the sink to solve the hot spot problem in WSNs near the sink node.Results: Simulation results proclaim that the GA-EMC scheme achieves a more extended network lifetime network stability and minimises delay than existing approaches in heterogeneous nature.peer-reviewe

    Energy Efficient Hybrid Routing Protocol Based on the Artificial Fish Swarm Algorithm and Ant Colony Optimisation for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are a particular type of distributed self-managed network with limited energy supply and communication ability. The most significant challenge of a routing protocol is the energy consumption and the extension of the network lifetime. Many energy-efficient routing algorithms were inspired by the development of Ant Colony Optimisation (ACO). However, due to the inborn defects, ACO-based routing algorithms have a slow convergence behaviour and are prone to premature, stagnation phenomenon, which hinders further route discovery, especially in a large-scale network. This paper proposes a hybrid routing algorithm by combining the Artificial Fish Swarm Algorithm (AFSA) and ACO to address these issues. We utilise AFSA to perform the initial route discovery in order to find feasible routes quickly. In the route discovery algorithm, we present a hybrid algorithm by combining the crowd factor in AFSA and the pseudo-random route select strategy in ACO. Furthermore, this paper presents an improved pheromone update method by considering energy levels and path length. Simulation results demonstrate that the proposed algorithm avoids the routing algorithm falling into local optimisation and stagnation, whilst speeding up the routing convergence, which is more prominent in a large-scale network. Furthermore, simulation evaluation reports that the proposed algorithm exhibits a significant improvement in terms of network lifetime

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio
    corecore