3,373 research outputs found

    Soft computing techniques applied to finance

    Get PDF
    Soft computing is progressively gaining presence in the financial world. The number of real and potential applications is very large and, accordingly, so is the presence of applied research papers in the literature. The aim of this paper is both to present relevant application areas, and to serve as an introduction to the subject. This paper provides arguments that justify the growing interest in these techniques among the financial community and introduces domains of application such as stock and currency market prediction, trading, portfolio management, credit scoring or financial distress prediction areas.Publicad

    Characterizing compromise solutions for investors with uncertain risk preferences

    Full text link
    [EN] The optimum portfolio selection for an investor with particular preferences was proven to lie on the normalized efficient frontier between two bounds defined by the Ballestero (1998) bounding theorem. A deeper understanding is possible if the decision-maker is provided with visual and quantitative techniques. Here, we derive useful insights as a way to support investor's decision-making through: (i) a new theorem to assess balance of solutions; (ii) a procedure and a new plot to deal with discrete efficient frontiers and uncertain risk preferences; and (iii) two quality metrics useful to predict long-run performance of investors.Work partially funded by projects Collectiveware TIN2015-66863-C2-1-R (MINECO/FEDER) and 2014 SGR 118Salas-Molina, F.; Rodriguez-Aguilar, JA.; Pla Santamaría, D. (2019). Characterizing compromise solutions for investors with uncertain risk preferences. Operational Research. 19(3):661-677. https://doi.org/10.1007/s12351-017-0309-6S661677193Amiri M, Ekhtiari M, Yazdani M (2011) Nadir compromise programming: a model for optimization of multi-objective portfolio problem. Expert Syst Appl 38(6):7222–7226Ballestero E (1998) Approximating the optimum portfolio for an investor with particular preferences. J Oper Res Soc 49:998–1000Ballestero E (2007) Compromise programming: a utility-based linear-quadratic composite metric from the trade-off between achievement and balanced (non-corner) solutions. Eur J Oper Res 182(3):1369–1382Ballestero E, Pla-Santamaria D (2004) Selecting portfolios for mutual funds. Omega 32(5):385–394Ballestero E, Pla-Santamaria D, Garcia-Bernabeu A, Hilario A (2015) Portfolio selection by compromise programming. In: Ballestero E, Pérez-Gladish B, Garcia-Bernabeu A (eds) Socially responsible investment. A multi-criteria decision making approach, vol 219. Springer, Switzerland, pp 177–196Ballestero E, Romero C (1996) Portfolio selection: a compromise programming solution. J Oper Res Soc 47(11):1377–1386Ballestero E, Romero C (1998) Multiple criteria decision making and its applications to economic problems. Kluwer Academic Publishers, BerlinBilbao-Terol A, Pérez-Gladish B, Arenas-Parra M, Rodríguez-Uría MV (2006) Fuzzy compromise programming for portfolio selection. Appl Math Comput 173(1):251–264Bravo M, Ballestero E, Pla-Santamaria D (2012) Evaluating fund performance by compromise programming with linear-quadratic composite metric: an actual case on the caixabank in spain. J Multi-Criteria Decis Anal 19(5–6):247–255Ehrgott M, Klamroth K, Schwehm C (2004) An MCDM approach to portfolio optimization. Eur J Oper Res 155(3):752–770Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874Hernández-Orallo J, Flach P, Ferri C (2013) ROC curves in cost space. Mach Learn 93(1):71–91Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91Pla-Santamaria D, Bravo M (2013) Portfolio optimization based on downside risk: a mean-semivariance efficient frontier from dow jones blue chips. Ann Oper Res 205(1):189–201Ringuest JL (1992) Multiobjective optimization: behavioral and computational considerations. Springer Science & Business Media, BerlinSteuer RE, Qi Y, Hirschberger M (2007) Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Ann Oper Res 152(1):297–317Xidonas P, Mavrotas G, Krintas T, Psarras J, Zopounidis C (2012) Multicriteria portfolio management. Springer, BerlinYu P-L (1973) A class of solutions for group decision problems. Manag Sci 19(8):936–946Yu P-L (1985) Multiple criteria decision making: concepts, techniques and extensions. Plenum Press, BerlinZeleny M (1982) Multiple criteria decision making. McGraw-Hill, New Yor

    A portfolio stock selection model based on expected utility, entropy and variance

    Get PDF
    In the context of investment decision-making, the selection of stocks is important for a successful construction of portfolios. In this paper the expected utility, entropy and variance (EU-EV) model is applied for stock selection, which can be used as preselection model for mean-variance portfolio optimization problems. Based on the EU-EV risk, stocks are ranked and the best ranked stocks with lower risk are selected in order to form subsets of stocks, which are then used to construct portfolios. The EU-EV model is applied to the PSI 20 index, to the Euro Stoxx 50 index and to the Nasdaq 100 index. Subsets of selected stocks are analysed and their portfolios' efficiencies are compared with those of the portfolios obtained from the whole set of stocks using the mean-variance model. The results reveal that the EU-EV model is an adequate stock selection model for building up efficient portfolios with a lower number of stocks.The author thanks the reviewers for helpful comments. The author thanks support from FCT (“Fundação para a Ciência e a Tecnologia”) through the Projects UIDB/00013/2020 and UIDP/00013/2020

    Possibility Analysis and Its Applications (Decision Theory and Its Related Fields)

    Get PDF

    Copulas in finance and insurance

    Get PDF
    Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing
    corecore