2,212 research outputs found

    A fuzzy-based hybrid PLL scheme for abnormal grid conditions

    Get PDF

    A multifunctional dynamic voltage restorer for power quality improvement

    Get PDF
    Power quality is a major concern in electrical power systems. The power quality disturbances such as sags, swells, harmonic distortion and other interruptions have an impact on the electrical devices and machines and in severe cases can cause serious damages. Therefore it is necessary to recognize and compensate all types of disturbances at an earliest time to ensure normal and efficient operation of the power system. To solve these problems, many types of power devices are used. At the present time, one of those devices, Dynamic Voltage Restorer (DVR) is the most efficient and effective device used in power distribution systems. In this paper, design and modeling of a new structure and a new control method of multifunctional DVRs for voltage quality correction are presented. The new control method was built in the stationary frame by combining Proportional Resonant controllers and Sequence-Decouple Resonant controllers. The performance of the device and this method under different conditions such as voltage swell, voltage sag due to symmetrical and unsymmetrical short circuit, starting of motors, and voltage distortion are described. Simulation result show the superior capability of the proposed DVR to improve power quality under different operating conditions and the effectiveness of the proposed method. The proposed new DVR controller is able to detect the voltage disturbances and control the converter to inject appropriate voltages independently for each phase and compensate to load voltage through three single-phase transformers.Web of Science116art. no. 135

    A Hybrid Active Filter Using the Backstepping Controller for Harmonic Current Compensation

    Get PDF
    This document presents a new hybrid combination of filters using passive and active elements because of the generalization in the use of non-linear loads that generate harmonics directly affecting the symmetry of energy transmission systems that influence the functioning of the electricity grid and, consequently, the deterioration of power quality. In this context, active power filters represent one of the best solutions for improving power quality and compensating harmonic currents to get a symmetrical waveform. In addition, given the importance and occupation of the transmission network, it is necessary to control the stability of the system. Traditionally, passive filters were used to improve energy quality, but they have endured problems such as resonance, fixed remuneration, etc. In order to mitigate these problems, a hybrid HAPF active power filter is proposed combining a parallel active filter and a passive filter controlled by a backstepping algorithm strategy. This control strategy is compared with two other methods, namely the classical PI control, and the fuzzy logic control in order to verify the effectiveness and the level of symmetry of the backstepping controller proposed for the HAPF. The proposed backstepping controller inspires the notion of stability in Lyapunov’s sense. This work is carried out to improve the performance of the HAPF by the backstepping command. It perfectly compensates the harmonics according to standards. The results of simulations performed under the Matlab/Simulink environment show the efficiency and robustness of the proposed backstepping controller applied on HAPF, compared to other control methods. The HAPF with the backstepping controller shows a significant decrease in the THD harmonic distortion rate

    Design and Implementation of Internal Model Based Controllers for DC/ AC Power Converters

    No full text
    The aim of this thesis is to design and implement an advanced control system for a working three-phase DC to AC power converter. Compared to' the traditional PI controller used widely in industry, the new voltage controller can track the reference voltage with improved accuracy and efficiency in the presence of different kind of local loads, and also works well in the single phase voltage control. This voltage controller is combined with a power controller to yield a complete controller. An important aspect of this work is the hardware implementation of the whole system. Main parts ofthis thesis are: ???????? 1. Review ofH-infinity and repetitive control techniques and their applications in power converters. 2. Design of a new voltage controller to eliminate the DC component in the output voltages, and taking into account the practical issues such as the processing delay due to the digital signal processor (DSP) implementation. 3. Modelling and simulation of the converter system incorporating different control techniques and with different kinds of loads. 4. Hardware implementation and the two-processor controller. The parallel communication between the DSPs. 5. The main problems encountered in???????????????????? hardware implementation and programming. The software used to initialize DSPs, implement the discretetime voltage controller and other functions such ~ generations of space vector pulse width modulation (SVPWM) signals, circuit protections, analog to digital (AD) cOl)versions, data transmission, etc. 6. Experimental results the under circumstances of no load connected to the converter, pure three-phase resistive loads, three-phase unbalanced resistive' loads and the series resistor-inductor loads. /Imperial Users onl

    CONTROLLERS AND METHODS FOR DIFFERENT ELECTRICAL MEASUREMENTS IN SYNCHRONIZATION OF RENEWABLE ENERGY SOURCES FOR GRID CONNECTIVITY: A REVIEW

    Get PDF
    In this paper, different controllers used in synchronization of renewable energy sources are studied. A study regarding the use of artificial intelligence in synchronization of grid connected power converters, efficient method for phase angle detection, frequency variation detection and good performance during voltage depression etc  carried out here. Importance of hybrid controllers over conventional controllers is also presented. Possibility of  Z source T type inverter as an alternate solution to DC-DC converter is explored based on existing works

    STEROWANIE ORAZ SYNCHRONIZACJA DWUPOZIOMOWEGO FALOWNIKA NAPIĘCIA W WARUNKACH PRZEJŚCIOWEJ ASYMETRII NAPIĘĆ SIECI

    Get PDF
    This paper presents the operation of grid tied, two level voltage source inverter (VSI) during network voltage unbalance. The control system was implemented in synchronous rotating reference frame dq0 (SRF). Two types of control structures were investigated herein. First utilizes the Double Decoupled SRF Phase-locked loop (DDSRF-PLL) synchronisation with positive and negative sequence currents control. Second one is simplified system that does not provide symmetrical components decomposition and decoupling for synchronisation. Simulation results exhibited a superior performance of the DDSRF-PLL control system under grid voltage unbalance.Niniejszy artykuł przedstawia pracę dwupoziomowego falownika napięcia współpracującego z siecią, podczas przejściowej asymetrii napięć. System sterowania został zaimplementowany w wirującym układzie synchronicznym dq0. Przeanalizowano dwa typy sterowania. W pierwszym zastosowano metodę synchronizacji z odprzęganiem DDSRF-PLL wraz z możliwością kontroli prądów składowej zgodnej i przeciwnej. Drugi natomiast w swoje uproszczeni formie nie pozwalała na sterowanie obu składowych symetrycznych, zabrakło również odprzęgania podczas synchronizacji z siecią. Wyniki symulacji pokazały o wiele lepsze działanie pierwszej metody sterowania

    DSOGI-PLL based power control method to mitigate control errors under disturbances of grid connected hybrid renewable power systems

    Get PDF
    The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR) power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid), and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL) based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method

    Fuzzy Hysteresis Controller Based Unified Power Quality Conditioner for Voltage Fluctuations and Harmonic Isolation

    Get PDF
    Power quality problem makes the consumer un satisfy.  FACTS devices such as UPQC are such devices to avoid power quality problems. This paper proposed an efficient hysteresis controller and fuzzy controller for unified power quality conditioner. In this harmonics and voltage fluctuations were dealed by UPQC with hysteresis control strategy. The performance of the control strategy applied unified power quality conditioner on distribution system checked with and without UPQC. And the performances of these two controllers of UPQC are compared. This strategy makes the industries to get pure power and to avoid the disturbances from polluted distribution system. The proposed dynamic model was developed in MATLAB/SIMULINK. Keywords: power quality, voltage fluctuations, harmonics, hysteresis controller, fuzzy controller

    A new SOGI-PLL method based on fuzzy logic for grid connected PV inverter

    Get PDF
    Phase angle detection of the grid voltage is an imperative part of control in most applications, especially for the synchronization of the current injected by the grid-connected photovoltaic inverters. Consequently, fast and accurate detection of the phase angle, frequency and amplitude of the grid voltage are indispensable data to ensure a correct generation of reference signals and operation of the grid connected inverters. We present in this work a new phase-locked loop (PLL) method for single-phase systems. The novelty is to generate an orthogonal voltage system using a second-order generalized integrator (SOGI), followed by a Park transformation, whose quadrature component is forced to zero by the fuzzy logic, in order to obtain rapid detection and a more accurate picture of the phase angle. Furthermore, simulation results with PSIM software will be submitted to verify the performance and effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.
    corecore