1,124 research outputs found

    Graph ambiguity

    Get PDF
    In this paper, we propose a rigorous way to define the concept of ambiguity in the domain of graphs. In past studies, the classical definition of ambiguity has been derived starting from fuzzy set and fuzzy information theories. Our aim is to show that also in the domain of the graphs it is possible to derive a formulation able to capture the same semantic and mathematical concept. To strengthen the theoretical results, we discuss the application of the graph ambiguity concept to the graph classification setting, conceiving a new kind of inexact graph matching procedure. The results prove that the graph ambiguity concept is a characterizing and discriminative property of graphs. (C) 2013 Elsevier B.V. All rights reserved

    Edge Clique Cover of Claw-free Graphs

    Full text link
    The smallest number of cliques, covering all edges of a graph G G , is called the (edge) clique cover number of G G and is denoted by cc(G) cc(G) . It is an easy observation that for every line graph G G with n n vertices, cc(G)≀ncc(G)\leq n . G. Chen et al. [Discrete Math. 219 (2000), no. 1--3, 17--26; MR1761707] extended this observation to all quasi-line graphs and questioned if the same assertion holds for all claw-free graphs. In this paper, using the celebrated structure theorem of claw-free graphs due to Chudnovsky and Seymour, we give an affirmative answer to this question for all claw-free graphs with independence number at least three. In particular, we prove that if G G is a connected claw-free graph on n n vertices with α(G)≄3 \alpha(G)\geq 3 , then cc(G)≀n cc(G)\leq n and equality holds if and only if G G is either the graph of icosahedron, or the complement of a graph on 1010 vertices called twister or the pthp^{th} power of the cycle Cn C_n , for 1≀p≀⌊(n−1)/3⌋1\leq p \leq \lfloor (n-1)/3\rfloor .Comment: 74 pages, 4 figure

    Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective

    Full text link
    Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as suggested by neural-symbolic computing. In this paper, we review the state-of-the-art on the use of GNNs as a model of neural-symbolic computing. This includes the application of GNNs in several domains as well as its relationship to current developments in neural-symbolic computing.Comment: Updated version, draft of accepted IJCAI2020 Survey Pape

    Conditional aggregation-based Choquet integral on discrete space

    Full text link
    We derive computational formulas for the generalized Choquet integral based on the novel survival function introduced by M. Boczek et al. [1]. We demonstrate its usefulness on the Knapsack problem and the problem of accommodation options. Moreover, we describe sufficient and necessary conditions under which novel survival functions based on different parameters coincide. This is closely related to the incomparability of input vectors (alternatives) in decision-making processes

    Stochastic Data Clustering

    Full text link
    In 1961 Herbert Simon and Albert Ando published the theory behind the long-term behavior of a dynamical system that can be described by a nearly uncoupled matrix. Over the past fifty years this theory has been used in a variety of contexts, including queueing theory, brain organization, and ecology. In all these applications, the structure of the system is known and the point of interest is the various stages the system passes through on its way to some long-term equilibrium. This paper looks at this problem from the other direction. That is, we develop a technique for using the evolution of the system to tell us about its initial structure, and we use this technique to develop a new algorithm for data clustering.Comment: 23 page

    First-order limits, an analytical perspective

    Full text link
    In this paper we present a novel approach to graph (and structural) limits based on model theory and analysis. The role of Stone and Gelfand dualities is displayed prominently and leads to a general theory, which we believe is naturally emerging. This approach covers all the particular examples of structural convergence and it put the whole in new context. As an application, it leads to new intermediate examples of structural convergence and to a "grand conjecture" dealing with sparse graphs. We survey the recent developments
    • 

    corecore