862 research outputs found

    Uncertainty in Ontologies: Dempster-Shafer Theory for Data Fusion Applications

    Full text link
    Nowadays ontologies present a growing interest in Data Fusion applications. As a matter of fact, the ontologies are seen as a semantic tool for describing and reasoning about sensor data, objects, relations and general domain theories. In addition, uncertainty is perhaps one of the most important characteristics of the data and information handled by Data Fusion. However, the fundamental nature of ontologies implies that ontologies describe only asserted and veracious facts of the world. Different probabilistic, fuzzy and evidential approaches already exist to fill this gap; this paper recaps the most popular tools. However none of the tools meets exactly our purposes. Therefore, we constructed a Dempster-Shafer ontology that can be imported into any specific domain ontology and that enables us to instantiate it in an uncertain manner. We also developed a Java application that enables reasoning about these uncertain ontological instances.Comment: Workshop on Theory of Belief Functions, Brest: France (2010

    Ontology-based knowledge representation and semantic search information retrieval: case study of the underutilized crops domain

    Get PDF
    The aim of using semantic technologies in domain knowledge modeling is to introduce the semantic meaning of concepts in knowledge bases, such that they are both human-readable as well as machine-understandable. Due to their powerful knowledge representation formalism and associated inference mechanisms, ontology-based approaches have been increasingly adopted to formally represent domain knowledge. The primary objective of this thesis work has been to use semantic technologies in advancing knowledge-sharing of Underutilized crops as a domain and investigate the integration of underlying ontologies developed in OWL (Web Ontology Language) with augmented SWRL (Semantic Web Rule Language) rules for added expressiveness. The work further investigated generating ontologies from existing data sources and proposed the reverse-engineering approach of generating domain specific conceptualization through competency questions posed from possible ontology users and domain experts. For utilization, a semantic search engine (the Onto-CropBase) has been developed to serve as a Web-based access point for the Underutilized crops ontology model. Relevant linked-data in Resource Description Framework Schema (RDFS) were added for comprehensiveness in generating federated queries. While the OWL/SWRL combination offers a highly expressive ontology language for modeling knowledge domains, the combination is found to be lacking supplementary descriptive constructs to model complex real-life scenarios, a necessary requirement for a successful Semantic Web application. To this end, the common logic programming formalisms for extending Description Logic (DL)-based ontologies were explored and the state of the art in SWRL expressiveness extensions determined with a view to extending the SWRL formalism. Subsequently, a novel fuzzy temporal extension to the Semantic Web Rule Language (FT-SWRL), which combines SWRL with fuzzy logic theories based on the valid-time temporal model, has been proposed to allow modeling imprecise temporal expressions in domain ontologies

    Identifying Conflicting Requirements in Systems of Systems

    Get PDF
    A System of Systems (SoS) is an arrangement of useful and independent sub-systems, which are integrated into a larger system. Examples are found in transport systems, nutritional systems, smart homes and smart cities. The composition of component sub-systems into an SoS enables support for complex functionalities that cannot be provided by individual sub-systems on their own. However, to realize the benefits of these functionalities it is necessary to address several software engineering challenges including, but not limited to, the specification, design, construction, deployment, and management of an SoS. The various component sub-systems in an SoS environment are often concerned with distinct domains; are developed by different stake-holders under different circumstances and time; provide distinct functionalities; and are used by different stakeholders, which allow for the existence of conflicting requirements. In this paper, we present a framework to support management of emerging conflicting requirements in an SoS. In particular, we describe an approach to support identification of conflicts between resource-based requirements (i.e. requirements concerned with the consumption of different resources). In order to illustrate and evaluate the work, we use an example of a pilot study of an IoT SoS ecosystem designed to support food security at different levels of granularity, namely individuals, groups, cities, and nations

    Ontology-based knowledge representation and semantic search information retrieval: case study of the underutilized crops domain

    Get PDF
    The aim of using semantic technologies in domain knowledge modeling is to introduce the semantic meaning of concepts in knowledge bases, such that they are both human-readable as well as machine-understandable. Due to their powerful knowledge representation formalism and associated inference mechanisms, ontology-based approaches have been increasingly adopted to formally represent domain knowledge. The primary objective of this thesis work has been to use semantic technologies in advancing knowledge-sharing of Underutilized crops as a domain and investigate the integration of underlying ontologies developed in OWL (Web Ontology Language) with augmented SWRL (Semantic Web Rule Language) rules for added expressiveness. The work further investigated generating ontologies from existing data sources and proposed the reverse-engineering approach of generating domain specific conceptualization through competency questions posed from possible ontology users and domain experts. For utilization, a semantic search engine (the Onto-CropBase) has been developed to serve as a Web-based access point for the Underutilized crops ontology model. Relevant linked-data in Resource Description Framework Schema (RDFS) were added for comprehensiveness in generating federated queries. While the OWL/SWRL combination offers a highly expressive ontology language for modeling knowledge domains, the combination is found to be lacking supplementary descriptive constructs to model complex real-life scenarios, a necessary requirement for a successful Semantic Web application. To this end, the common logic programming formalisms for extending Description Logic (DL)-based ontologies were explored and the state of the art in SWRL expressiveness extensions determined with a view to extending the SWRL formalism. Subsequently, a novel fuzzy temporal extension to the Semantic Web Rule Language (FT-SWRL), which combines SWRL with fuzzy logic theories based on the valid-time temporal model, has been proposed to allow modeling imprecise temporal expressions in domain ontologies

    Modeling and improving Spatial Data Infrastructure (SDI)

    Get PDF
    Spatial Data Infrastructure (SDI) development is widely known to be a challenging process owing to its complex and dynamic nature. Although great effort has been made to conceptually explain the complexity and dynamics of SDIs, few studies thus far have actually modeled these complexities. In fact, better modeling of SDI complexities will lead to more reliable plans for its development. A state-of-the-art simulation model of SDI development, hereafter referred to as SMSDI, was created by using the system dynamics (SD) technique. The SMSDI enables policy-makers to test various investment scenarios in different aspects of SDI and helps them to determine the optimum policy for further development of an SDI. This thesis begins with adaption of the SMSDI to a new case study in Tanzania by using the community of participant concept, and further development of the model is performed by using fuzzy logic. It is argued that the techniques and models proposed in this part of the study enable SDI planning to be conducted in a more reliable manner, which facilitates receiving the support of stakeholders for the development of SDI.Developing a collaborative platform such as SDI would highlight the differences among stakeholders including the heterogeneous data they produce and share. This makes the reuse of spatial data difficult mainly because the shared data need to be integrated with other datasets and used in applications that differ from those originally produced for. The integration of authoritative data and Volunteered Geographic Information (VGI), which has a lower level structure and production standards, is a new, challenging area. The second part of this study focuses on proposing techniques to improve the matching and integration of spatial datasets. It is shown that the proposed solutions, which are based on pattern recognition and ontology, can considerably improve the integration of spatial data in SDIs and enable the reuse or multipurpose usage of available data resources

    Fusing Automatically Extracted Annotations for the Semantic Web

    Get PDF
    This research focuses on the problem of semantic data fusion. Although various solutions have been developed in the research communities focusing on databases and formal logic, the choice of an appropriate algorithm is non-trivial because the performance of each algorithm and its optimal configuration parameters depend on the type of data, to which the algorithm is applied. In order to be reusable, the fusion system must be able to select appropriate techniques and use them in combination. Moreover, because of the varying reliability of data sources and algorithms performing fusion subtasks, uncertainty is an inherent feature of semantically annotated data and has to be taken into account by the fusion system. Finally, the issue of schema heterogeneity can have a negative impact on the fusion performance. To address these issues, we propose KnoFuss: an architecture for Semantic Web data integration based on the principles of problem-solving methods. Algorithms dealing with different fusion subtasks are represented as components of a modular architecture, and their capabilities are described formally. This allows the architecture to select appropriate methods and configure them depending on the processed data. In order to handle uncertainty, we propose a novel algorithm based on the Dempster-Shafer belief propagation. KnoFuss employs this algorithm to reason about uncertain data and method results in order to refine the fused knowledge base. Tests show that these solutions lead to improved fusion performance. Finally, we addressed the problem of data fusion in the presence of schema heterogeneity. We extended the KnoFuss framework to exploit results of automatic schema alignment tools and proposed our own schema matching algorithm aimed at facilitating data fusion in the Linked Data environment. We conducted experiments with this approach and obtained a substantial improvement in performance in comparison with public data repositories
    • …
    corecore