34 research outputs found

    Road Geometry and Steering Reconstruction for Powered Two Wheeled Vehicles

    Get PDF
    International audienceThis paper deals with the estimation of both motorcycle lateral dynamics and road geometry reconstruction. A linear parameter varying (LPV) unknown input observer is designed to estimate the whole motorcycle dynamic states including road banking angles and the rider's steering torque taken into account the variation of the forward velocity. The road bank angle and the lateral slip angle are relevant parameters for improving rider's safety and handling, thus, it is interesting to estimate the road geometry. The observer convergence study is based on Lyapunov theory and the established convergence conditions are expressed in linear matrix inequalities (LMIs) formalism. The main idea consists in getting a set of conditions to design an observer transformed into a polytopic form, which estimates a part of the motorcycle dynamics states independently of some inputs (rider torque) and/or other states (zeros dynamics: roll angle) taken into account the variation of the longitudinal velocity

    AAS/GSFC 13th International Symposium on Space Flight Dynamics

    Get PDF
    This conference proceedings preprint includes papers and abstracts presented at the 13th International Symposium on Space Flight Dynamics. Cosponsored by American Astronautical Society and the Guidance, Navigation and Control Center of the Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude dynamics; and mission design

    Contributions to improve the technologies supporting unmanned aircraft operations

    Get PDF
    Mención Internacional en el título de doctorUnmanned Aerial Vehicles (UAVs), in their smaller versions known as drones, are becoming increasingly important in today's societies. The systems that make them up present a multitude of challenges, of which error can be considered the common denominator. The perception of the environment is measured by sensors that have errors, the models that interpret the information and/or define behaviors are approximations of the world and therefore also have errors. Explaining error allows extending the limits of deterministic models to address real-world problems. The performance of the technologies embedded in drones depends on our ability to understand, model, and control the error of the systems that integrate them, as well as new technologies that may emerge. Flight controllers integrate various subsystems that are generally dependent on other systems. One example is the guidance systems. These systems provide the engine's propulsion controller with the necessary information to accomplish a desired mission. For this purpose, the flight controller is made up of a control law for the guidance system that reacts to the information perceived by the perception and navigation systems. The error of any of the subsystems propagates through the ecosystem of the controller, so the study of each of them is essential. On the other hand, among the strategies for error control are state-space estimators, where the Kalman filter has been a great ally of engineers since its appearance in the 1960s. Kalman filters are at the heart of information fusion systems, minimizing the error covariance of the system and allowing the measured states to be filtered and estimated in the absence of observations. State Space Models (SSM) are developed based on a set of hypotheses for modeling the world. Among the assumptions are that the models of the world must be linear, Markovian, and that the error of their models must be Gaussian. In general, systems are not linear, so linearization are performed on models that are already approximations of the world. In other cases, the noise to be controlled is not Gaussian, but it is approximated to that distribution in order to be able to deal with it. On the other hand, many systems are not Markovian, i.e., their states do not depend only on the previous state, but there are other dependencies that state space models cannot handle. This thesis deals a collection of studies in which error is formulated and reduced. First, the error in a computer vision-based precision landing system is studied, then estimation and filtering problems from the deep learning approach are addressed. Finally, classification concepts with deep learning over trajectories are studied. The first case of the collection xviiistudies the consequences of error propagation in a machine vision-based precision landing system. This paper proposes a set of strategies to reduce the impact on the guidance system, and ultimately reduce the error. The next two studies approach the estimation and filtering problem from the deep learning approach, where error is a function to be minimized by learning. The last case of the collection deals with a trajectory classification problem with real data. This work completes the two main fields in deep learning, regression and classification, where the error is considered as a probability function of class membership.Los vehículos aéreos no tripulados (UAV) en sus versiones de pequeño tamaño conocidos como drones, van tomando protagonismo en las sociedades actuales. Los sistemas que los componen presentan multitud de retos entre los cuales el error se puede considerar como el denominador común. La percepción del entorno se mide mediante sensores que tienen error, los modelos que interpretan la información y/o definen comportamientos son aproximaciones del mundo y por consiguiente también presentan error. Explicar el error permite extender los límites de los modelos deterministas para abordar problemas del mundo real. El rendimiento de las tecnologías embarcadas en los drones, dependen de nuestra capacidad de comprender, modelar y controlar el error de los sistemas que los integran, así como de las nuevas tecnologías que puedan surgir. Los controladores de vuelo integran diferentes subsistemas los cuales generalmente son dependientes de otros sistemas. Un caso de esta situación son los sistemas de guiado. Estos sistemas son los encargados de proporcionar al controlador de los motores información necesaria para cumplir con una misión deseada. Para ello se componen de una ley de control de guiado que reacciona a la información percibida por los sistemas de percepción y navegación. El error de cualquiera de estos sistemas se propaga por el ecosistema del controlador siendo vital su estudio. Por otro lado, entre las estrategias para abordar el control del error se encuentran los estimadores en espacios de estados, donde el filtro de Kalman desde su aparición en los años 60, ha sido y continúa siendo un gran aliado para los ingenieros. Los filtros de Kalman son el corazón de los sistemas de fusión de información, los cuales minimizan la covarianza del error del sistema, permitiendo filtrar los estados medidos y estimarlos cuando no se tienen observaciones. Los modelos de espacios de estados se desarrollan en base a un conjunto de hipótesis para modelar el mundo. Entre las hipótesis se encuentra que los modelos del mundo han de ser lineales, markovianos y que el error de sus modelos ha de ser gaussiano. Generalmente los sistemas no son lineales por lo que se realizan linealizaciones sobre modelos que a su vez ya son aproximaciones del mundo. En otros casos el ruido que se desea controlar no es gaussiano, pero se aproxima a esta distribución para poder abordarlo. Por otro lado, multitud de sistemas no son markovianos, es decir, sus estados no solo dependen del estado anterior, sino que existen otras dependencias que los modelos de espacio de estados no son capaces de abordar. Esta tesis aborda un compendio de estudios sobre los que se formula y reduce el error. En primer lugar, se estudia el error en un sistema de aterrizaje de precisión basado en visión por computador. Después se plantean problemas de estimación y filtrado desde la aproximación del aprendizaje profundo. Por último, se estudian los conceptos de clasificación con aprendizaje profundo sobre trayectorias. El primer caso del compendio estudia las consecuencias de la propagación del error de un sistema de aterrizaje de precisión basado en visión artificial. En este trabajo se propone un conjunto de estrategias para reducir el impacto sobre el sistema de guiado, y en última instancia reducir el error. Los siguientes dos estudios abordan el problema de estimación y filtrado desde la perspectiva del aprendizaje profundo, donde el error es una función que minimizar mediante aprendizaje. El último caso del compendio aborda un problema de clasificación de trayectorias con datos reales. Con este trabajo se completan los dos campos principales en aprendizaje profundo, regresión y clasificación, donde se plantea el error como una función de probabilidad de pertenencia a una clase.I would like to thank the Ministry of Science and Innovation for granting me the funding with reference PRE2018-086793, associated to the project TEC2017-88048-C2-2-R, which provide me the opportunity to carry out all my PhD. activities, including completing an international research internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Antonio Berlanga de Jesús.- Secretario: Daniel Arias Medina.- Vocal: Alejandro Martínez Cav

    A Review of Resonant Converter Control Techniques and The Performances

    Get PDF
    paper first discusses each control technique and then gives experimental results and/or performance to highlights their merits. The resonant converter used as a case study is not specified to just single topology instead it used few topologies such as series-parallel resonant converter (SPRC), LCC resonant converter and parallel resonant converter (PRC). On the other hand, the control techniques presented in this paper are self-sustained phase shift modulation (SSPSM) control, self-oscillating power factor control, magnetic control and the H-∞ robust control technique

    Actes des 22èmes rencontres francophones sur la Logique Floue et ses Applications, 10-11 octobre 2013, Reims, France

    Get PDF

    State-Feedback Controller Based on Pole Placement Technique for Inverted Pendulum System

    Get PDF
    This paper presents a state space control technique for inverted pendulum system using simulation and real experiment via MATLAB/SIMULINK software. The inverted pendulum is difficult system to control in the field of control engineering. It is also one of the most important classical control system problems because of its nonlinear characteristics and unstable system. It has three main problems that always appear in control application which are nonlinear system, unstable and non-minimumbehavior phase system. This project will apply state feedback controller based on pole placement technique which is capable in stabilizing the practical based inverted pendulum at vertical position. Desired design specifications which are 4 seconds settling time and 5 % overshoot is needed to apply in full state feedback controller based on pole placement technique. First of all, the mathematical model of an inverted pendulum system is derived to obtain the state space representation of the system. Then, the design phase of the State-Feedback Controller can be conducted after linearization technique is performed to the nonlinear equation with the aid of mathematical aided software such as Mathcad. After that, the design is simulated using MATLAB/Simulink software. The controller design of the inverted pendulum system is verified using simulation and experiment test. Finally the controller design is compared with PID controller for benchmarking purpose

    A SIMULATION STUDY OF STATE-FEEDBACK CONTROL METHOD FOR ELECTRO HYDRAULIC SERVO MODEL

    Get PDF
    Electro hydraulic servo system is used by many industries due to its ability to impart large forces. It also has advantage in term of fast response and robustness. The electro hydraulic system suffered from errors of the transient response which are steady state error, settling time and the ripples. It is crucial to design a controller for the system to ensure the reliability of the system. Aiming at the characteristic of the system, steady state feedback control method is designed to compensate the error. The analysis of the system is done based on the transient response specifically on the actuator part. MATLAB Simulink is used as the simulation software to evaluate the force performance of state feedback controller method. The steady state error, settling time and ripple are observed and recorded for each controller. Three methods is applied, which are full feedback, state feedback with feed forward and integral control are compared with proportional, integral and derivatives (PID) controller. The result of each controller shows the differences performance. Based on the simulation results, the feedforward technique is found to be the best control technique for the electro hydraulic servo system due to the requirement performance such as percent overshoot, settling time, rise time and zero steady state error. This good result will directly benefit industries that use electro hydraulic system as their actuator for production machines
    corecore