5,564 research outputs found

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Development and characterisation of error functions in design

    Get PDF
    As simulation is increasingly used in product development, there is a need to better characterise the errors inherent in simulation techniques by comparing such techniques with evidence from experiment, test and inservice. This is necessary to allow judgement of the adequacy of simulations in place of physical tests and to identify situations where further data collection and experimentation need to be expended. This paper discusses a framework for uncertainty characterisation based on the management of design knowledge leading to the development and characterisation of error functions. A classiïŹcation is devised in the framework to identify the most appropriate method for the representation of error, including probability theory, interval analysis and Fuzzy set theory. The development is demonstrated with two case studies to justify rationale of the framework. Such formal knowledge management of design simulation processes can facilitate utilisation of cumulated design knowledge as companies migrate from testing to simulation-based design

    Fuzzy reliability prediction of rotating machinery product with accelerated testing data

    Get PDF
    For machinery product experienced several operating conditions, this paper proposes a framework of fuzzy reliability analysis of machinery accelerated testing. Due to the non-stationary of the vibration signals, a Gaussian mixture model (GMM) method is introduced to obtain the degradation index through calculating the overlap between current feature set and the historical baseline set. The features in four domains are extracted. Considered that the uncertainties exit in feature extraction and health assessment, a fuzzy regression model is used to describe the degradation path at each operating condition and compute fuzzy quasi time to failures (q-TTFs). Meanwhile, the relationship between q-TTFs and environmental variables are identified by a linear model, through which the fuzzy reliability analysis can be conducted with the most appropriate lifetime distribution. An industrial application is used to verify the effectiveness of the proposed framework and the results have confirmed a good consistency with the true values

    Reliability approach for safe designing on a locking system

    Get PDF
    The aim of this work is to predict the failure probability of a locking system. This failure probability is assessed using complementary methods: the First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM) as approximated methods, and Monte Carlo simulations as the reference method. Both types are implemented in a specific software [Phimeca software. Software for reliability analysis developed by Phimeca Engineering S.A.] used in this study. For the Monte Carlo simulations, a response surface, based on experimental design and finite element calculations [Abaqus/Standard User’s Manuel vol. I.], is elaborated so that the relation between the random input variables and structural responses could be established. Investigations of previous reliable methods on two configurations of the locking system show the large sturdiness of the first one and enable design improvements for the second one

    Reliability approach for safe designing on a locking system

    Get PDF
    The aim of this work is to predict the failure probability of a locking system. This failure probability is assessed using complementary methods: the First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM) as approximated methods, and Monte Carlo simulations as the reference method. Both types are implemented in a specific software [Phimeca software. Software for reliability analysis developed by Phimeca Engineering S.A.] used in this study. For the Monte Carlo simulations, a response surface, based on experimental design and finite element calculations [Abaqus/Standard User’s Manuel vol. I.], is elaborated so that the relation between the random input variables and structural responses could be established. Investigations of previous reliable methods on two configurations of the locking system show the large sturdiness of the first one and enable design improvements for the second one

    Beurteilung der ResttragfÀhigkeit von Bauwerken mit Hilfe der Fuzzy-Logik und Entscheidungstheorie

    Get PDF
    Whereas the design of new structures is almost completely regulated by codes, there are no objective ways for the evaluation of existing facilities. Experts often are not familiar with the new tasks in system identification and try to retrieve at least some information from available documents. They therefore make compromises which, for many stakeholders, are not satisfying. Consequently, this publication presents a more objective and more realistic method for condition assessment. Necessary basics for this task are fracture mechanics combined with computational analysis, methods and techniques for geometry recording and material investigation, ductility and energy dissipation, risk analysis and uncertainty consideration. Present tools for evaluation perform research on how to analytically conceptualize a structure directly from given loads and measured response. Since defects are not necessarily visible or in a direct way detectable, several damage indices are combined and integrated in a model of the real system. Fuzzy-sets are ideally suited to illustrate parametric/data uncertainty and system- or model uncertainty. Trapezoidal membership functions may very well represent the condition state of structural components as function of damage extent or performance. Tthe residual load-bearing capacity can be determined by successively performing analyses in three steps. The "Screening assessment" shall eliminate a large majority of structures from detailed consideration and advise on immediate precautions to save lives and high economic values. Here, the defects have to be explicitly defined and located. If this is impossible, an "approximate evaluation" should follow describing system geometry, material properties and failure modes in detail. Here, a fault-tree helps investigate defaults in a systematic way avoiding random search or negligence of important features or damage indices. In order to inform about the structural system it is deemed essential not only due to its conceptual clarity, but also due to its applicational simplicity. It therefore represents an important prerequisite in condition assessment though special circumstances might require "fur-ther investigations" to consider the actual material parameters and unaccounted reserves due to spatial or other secondary contributions. Here, uncertainties with respect to geometry, material, loading or modeling should in no case be neglected, but explicitly quantified. Postulating a limited set of expected failure modes is not always sufficient, since detectable signature changes are seldom directly attributable and every defect might -together with other unforeseen situations- become decisive. So, a determination of all possible scenarios to consider every imaginable influence would be required. Risk is produced by a combination of various and ill-defined failure modes. Due to the interaction of many variables there is no simple and reliable way to predict which failure mode is dominant. Risk evaluation therefore comprises the estimation of the prognostic factor with respect to undesir-able events, component importance and the expected damage extent.WĂ€hrend die Bemessung von Tragwerken im allgemeinen durch Vorschriften geregelt ist, gibt es fĂŒr die Zustandsbewertung bestehender Bauwerken noch keine objektiven Richtlinien. Viele Experten sind mit der neuen Problematik (Systemidentifikation anhand von Belastung und daraus entstehender Strukturantwort) noch nicht vertraut und begnĂŒgen sich daher mit Kompromißlösungen. FĂŒr viele Bauherren ist dies unbefriedigend, weshalb hier eine objektivere und wirklichkeitsnĂ€here Zustandsbewertung vorgestellt wird. Wichtig hierfĂŒr sind theoretische Grundlagen der Schadensanalyse, Methoden und Techniken zur Geometrie- und Materialerkundung, DuktilitĂ€t und Energieabsorption, Risikoanalyse und Beschreibung von Unsicherheiten. Da nicht alle SchĂ€den offensichtlich sind, kombiniert man zur Zeit mehrere Zustandsindikatoren, bereitet die registrierten Daten gezielt auf, und integriert sie vor einer endgĂŒltigen Bewertung in ein validiertes Modell. Werden deterministische Nachweismethoden mit probabilstischen kombiniert, lassen sich nur zufĂ€llige Fehler problemlos minimieren. Systematische Fehler durch ungenaue Modellierung oder vagem Wissen bleiben jedoch bestehen. Daß EntscheidungstrĂ€ger mit unsicheren, oft sogar widersprĂŒchlichen Angaben subjektiv urteilen, ist also nicht zu vermeiden. In dieser Arbeit wird gezeigt, wie mit Hilfe eines dreistufigen Bewertungsverfahrens Tragglieder in QualitĂ€tsklassen eingestuft werden können. AbhĂ€ngig von ihrem mittleren Schadensausmaß, ihrer Strukturbedeutung I (wiederum von ihrem Stellenwert bzw. den Konsequenzen ihrer SchĂ€digung abhĂ€ngig) und ihrem Prognosefaktor L ergibt sich ihr Versagensrisiko mit. Das Risiko fĂŒr eine Versagen der Gesamtstruktur wird aus der Topologie ermittelt. Wenn das mittlere Schadensausmaß nicht eindeutig festgelegt werden kann, oder wenn die Material-, Geometrie- oder Lastangaben vage sind, wird im Rahmen "Weitergehender Untersuchungen" ein mathematisches Verfahren basierend auf der Fuzzy-Logik vorgeschlagen. Es filtert auch bei komplexen Ursache-Wirkungsbeziehungen die dominierende Schadensursache heraus und vermeidet, daß mit Unsicherheiten behaftete Parameter fĂŒr zuverlĂ€ssige Absolutwerte gehalten werden. Um den mittleren Schadensindex und daraus das Risiko zu berechnen, werden die einzelnen Schadensindizes (je nach Fehlermodus) abhĂ€ngig von ihrer Bedeutung mit Wichtungsfaktoren belegt,und zusĂ€tzlich je nach Art, Bedeutung und ZuverlĂ€ssigkeit der erhaltenen Information durch Gamma dividiert. Hiermit wurde ein neues Verfahren zur Analyse komplexer Versagensmechanismen vorgestellt, welches nachvollziehbare Schlußfolgerungen ermöglicht

    Prognostics and health management of power electronics

    Get PDF
    Prognostics and health management (PHM) is a major tool enabling systems to evaluate their reliability in real-time operation. Despite ground-breaking advances in most engineering and scientific disciplines during the past decades, reliability engineering has not seen significant breakthroughs or noticeable advances. Therefore, self-awareness of the embedded system is also often required in the sense that the system should be able to assess its own health state and failure records, and those of its main components, and take action appropriately. This thesis presents a radically new prognostics approach to reliable system design that will revolutionise complex power electronic systems with robust prognostics capability enhanced Insulated Gate Bipolar Transistors (IGBT) in applications where reliability is significantly challenging and critical. The IGBT is considered as one of the components that is mainly damaged in converters and experiences a number of failure mechanisms, such as bond wire lift off, die attached solder crack, loose gate control voltage, etc. The resulting effects mentioned are complex. For instance, solder crack growth results in increasing the IGBT’s thermal junction which becomes a source of heat turns to wire bond lift off. As a result, the indication of this failure can be seen often in increasing on-state resistance relating to the voltage drop between on-state collector-emitter. On the other hand, hot carrier injection is increased due to electrical stress. Additionally, IGBTs are components that mainly work under high stress, temperature and power consumptions due to the higher range of load that these devices need to switch. This accelerates the degradation mechanism in the power switches in discrete fashion till reaches failure state which fail after several hundred cycles. To this end, exploiting failure mechanism knowledge of IGBTs and identifying failure parameter indication are background information of developing failure model and prognostics algorithm to calculate remaining useful life (RUL) along with ±10% confidence bounds. A number of various prognostics models have been developed for forecasting time to failure of IGBTs and the performance of the presented estimation models has been evaluated based on two different evaluation metrics. The results show significant improvement in health monitoring capability for power switches.Furthermore, the reliability of the power switch was calculated and conducted to fully describe health state of the converter and reconfigure the control parameter using adaptive algorithm under degradation and load mission limitation. As a result, the life expectancy of devices has been increased. These all allow condition-monitoring facilities to minimise stress levels and predict future failure which greatly reduces the likelihood of power switch failures in the first place
    • 

    corecore