215 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    3D Deep Learning on Medical Images: A Review

    Full text link
    The rapid advancements in machine learning, graphics processing technologies and availability of medical imaging data has led to a rapid increase in use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, give a brief mathematical description of 3D CNN and the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection, and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models, in general) and possible future trends in the field.Comment: 13 pages, 4 figures, 2 table

    Glioblastoma Surgery Imaging-Reporting and Data System: Validation and Performance of the Automated Segmentation Task

    Get PDF
    For patients with presumed glioblastoma, essential tumor characteristics are determined from preoperative MR images to optimize the treatment strategy. This procedure is time-consuming and subjective, if performed by crude eyeballing or manually. The standardized GSI-RADS aims to provide neurosurgeons with automatic tumor segmentations to extract tumor features rapidly and objectively. In this study, we improved automatic tumor segmentation and compared the agreement with manual raters, describe the technical details of the different components of GSI-RADS, and determined their speed. Two recent neural network architectures were considered for the segmentation task: nnU-Net and AGU-Net. Two preprocessing schemes were introduced to investigate the tradeoff between performance and processing speed. A summarized description of the tumor feature extraction and standardized reporting process is included. The trained architectures for automatic segmentation and the code for computing the standardized report are distributed as open-source and as open-access software. Validation studies were performed on a dataset of 1594 gadolinium-enhanced T1-weighted MRI volumes from 13 hospitals and 293 T1-weighted MRI volumes from the BraTS challenge. The glioblastoma tumor core segmentation reached a Dice score slightly below 90%, a patientwise F1-score close to 99%, and a 95th percentile Hausdorff distance slightly below 4.0 mm on average with either architecture and the heavy preprocessing scheme. A patient MRI volume can be segmented in less than one minute, and a standardized report can be generated in up to five minutes. The proposed GSI-RADS software showed robust performance on a large collection of MRI volumes from various hospitals and generated results within a reasonable runtime

    Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization

    Get PDF
    In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmenta- tion approach (HSA)–Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)–FMRIB’s automated segmenta- tion tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20 % bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3 % noise and synthetic EEG (generated for a prescribed source). The source localiza- tion accuracy was determined in terms of localization error and relative error of potential. The experimental results dem- onstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and sug- gest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem

    Automated brain segmentation methods for clinical quality MRI and CT images

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with brain tissue loss. Accurate estimation of this loss is critical for the diagnosis, prognosis, and tracking the progression of AD. Structural magnetic resonance imaging (sMRI) and X-ray computed tomography (CT) are widely used imaging modalities that help to in vivo map brain tissue distributions. As manual image segmentations are tedious and time-consuming, automated segmentation methods are increasingly applied to head MRI and head CT images to estimate brain tissue volumes. However, existing automated methods can be applied only to images that have high spatial resolution and their accuracy on heterogeneous low-quality clinical images has not been tested. Further, automated brain tissue segmentation methods for CT are not available, although CT is more widely acquired than MRI in the clinical setting. For these reasons, large clinical imaging archives are unusable for research studies. In this work, we identify and develop automated tissue segmentation and brain volumetry methods that can be applied to clinical quality MRI and CT images. In the first project, we surveyed the current MRI methods and validated the accuracy of these methods when applied to clinical quality images. We then developed CTSeg, a tissue segmentation method for CT images, by adopting the MRI technique that exhibited the highest reliability. CTSeg is an atlas-based statistical modeling method that relies on hand-curated features and cannot be applied to images of subjects with different diseases and age groups. Advanced deep learning-based segmentation methods use hierarchical representations and learn complex features in a data-driven manner. In our final project, we develop a fully automated deep learning segmentation method that uses contextual information to segment clinical quality head CT images. The application of this method on an AD dataset revealed larger differences between brain volumes of AD and control subjects. This dissertation demonstrates the potential of applying automated methods to large clinical imaging archives to answer research questions in a variety of studies
    • …
    corecore