83,008 research outputs found

    Fuzzy Modeling and Parallel Distributed Compensation for Aircraft Flight Control from Simulated Flight Data

    Get PDF
    A method is described that combines fuzzy system identification techniques with Parallel Distributed Compensation (PDC) to develop nonlinear control methods for aircraft using minimal a priori knowledge, as part of NASAs Learn-to-Fly initiative. A fuzzy model was generated with simulated flight data, and consisted of a weighted average of multiple linear time invariant state-space cells having parameters estimated using the equation-error approach and a least-squares estimator. A compensator was designed for each subsystem using Linear Matrix Inequalities (LMI) to guarantee closed-loop stability and performance requirements. This approach is demonstrated using simulated flight data to automatically develop a fuzzy model and design control laws for a simplified longitudinal approximation of the F-16 nonlinear flight dynamics simulation. Results include a comparison of flight data with the estimated fuzzy models and simulations that illustrate the feasibility and utility of the combined fuzzy modeling and control approach

    An Artificial Intelligence Approach for Modeling and Prediction of Water Diffusion Inside a Carbon Nanotube

    Get PDF
    Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input–output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input–output data pairs. Good performance of the designed ANFIS ensures its capability as a promising tool for modeling and prediction of fluid flow at nanoscale where the continuum models of fluid dynamics tend to break down

    APPRAISAL OF TAKAGI–SUGENO TYPE NEURO-FUZZY NETWORK SYSTEM WITH A MODIFIED DIFFERENTIAL EVOLUTION METHOD TO PREDICT NONLINEAR WHEEL DYNAMICS CAUSED BY ROAD IRREGULARITIES

    Get PDF
    Wheel dynamics play a substantial role in traversing and controlling the vehicle, braking, ride comfort, steering, and maneuvering. The transient wheel dynamics are difficult to be ascertained in tire–obstacle contact condition. To this end, a single-wheel testing rig was utilized in a soil bin facility for provision of a controlled experimental medium. Differently manufactured obstacles (triangular and Gaussian shaped geometries) were employed at different obstacle heights, wheel loads, tire slippages and forward speeds to measure the forces induced at vertical and horizontal directions at tire–obstacle contact interface. A new Takagi–Sugeno type neuro-fuzzy network system with a modified Differential Evolution (DE) method was used to model wheel dynamics caused by road irregularities. DE is a robust optimization technique for complex and stochastic algorithms with ever expanding applications in real-world problems. It was revealed that the new proposed model can be served as a functional alternative to classical modeling tools for the prediction of nonlinear wheel dynamics

    A Study on Green Economy Indicators and Modeling: Russian Context

    Get PDF
    This article aims to assess and forecast the dynamics of a regional green economy. The research relevance is determined by the need to develop theoretical and methodological basis of the green economy for the transition period and to identify criteria basis for assessing the state and regional level of it. The authors applied the modern methods, which allowed to model criteria considering data uncertainty and both static and dynamic criteria. The research process involved the methods of scientific analysis, comparison and synthesis, the theory of fuzzy sets, and fuzzy modeling. The main principles and methodology of the criteria evaluation for a regional green economy are proposed. The principal methodological approach in this research combines the current state and dynamics of the green economy in evaluating and forecasting the conditions of data uncertainty. The research results form a theoretical, methodological, and practical basis for assessing the current state and level of a regional green economy development, determining the effectiveness of environmental and economic programs, optimizing financial management, conducting environmental monitoring, and developing state plans.The research was funded by the grant of the Ministry of Education and Science of the Russian Federation to Perm National Research Polytechnic University # 26.6884.2017/8.9 "Sustainable development of urban areas and the improvement of the human environment.

    A Study on Green Economy Indicators and Modeling: Russian Context

    Get PDF
    This article aims to assess and forecast the dynamics of a regional green economy. The research relevance is determined by the need to develop theoretical and methodological basis of the green economy for the transition period and to identify criteria basis for assessing the state and regional level of it. The authors applied the modern methods, which allowed to model criteria considering data uncertainty and both static and dynamic criteria. The research process involved the methods of scientific analysis, comparison and synthesis, the theory of fuzzy sets, and fuzzy modeling. The main principles and methodology of the criteria evaluation for a regional green economy are proposed. The principal methodological approach in this research combines the current state and dynamics of the green economy in evaluating and forecasting the conditions of data uncertainty. The research results form a theoretical, methodological, and practical basis for assessing the current state and level of a regional green economy development, determining the effectiveness of environmental and economic programs, optimizing financial management, conducting environmental monitoring, and developing state plans.The research was funded by the grant of the Ministry of Education and Science of the Russian Federation to Perm National Research Polytechnic University # 26.6884.2017/8.9 "Sustainable development of urban areas and the improvement of the human environment.

    Optimal control design for robust fuzzy friction compensation in a robot joint

    Get PDF
    This paper presents a methodology for the compensation of nonlinear friction in a robot joint structure based on a fuzzy local modeling technique. To enhance the tracking performance of the robot joint, a dynamic model is derived from the local physical properties of friction. The model is the basis of a precompensator taking into account the dynamics of the overall corrected system by means of a minor loop. The proposed structure does not claim to faithfully reproduce complex phenomena driven by friction. However, the linearity of the local models simplifies the design and implementation of the observer, and its estimation capabilities are improved by the nonlinear integral gain. The controller can then be robustly synthesized using linear matrix inequalities to cancel the effects of inexact friction compensation. Experimental tests conducted on a robot joint with a high level of friction demonstrate the effectiveness of the proposed fuzzy observer-based control strategy for tracking system trajectories when operating in zero-velocity regions and during motion reversals

    Modeling, Analysis and Control of Fuzzy Systems

    Full text link
    For the development of the field of fuzzy control systems, techniques for modeling fuzzy systems need to be developed, which makes analysis of the system and the design of control laws systematic. In this paper, a new model of fuzzy systems is proposed which is a variation of “Tagaki and Sugeno\u27s fuzzy model”. Analysis of this model in terms of stability, controllability, observability etc. Is much simpler. It also makes model-based control design easier, while retaining the derivations of connections of fuzzy blocks for piecewise continuous polynomial membership functions. Although the model is easier to analyze, it can represent highly nonlinear dynamics

    Quantum Genetics, Quantum Automata and Quantum Computation

    Get PDF
    The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In a previous publication (Baianu,1971a) the formal concept of quantum automaton was introduced and its possible implications for genetic and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b). The notions of topological semigroup, quantum automaton,or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebras that showed significant dissimilarities (Baianu, 1977) from Bolean models of human neural networks (McCullough and Pitts,1945). Molecular models in terms of categories, functors and natural transformations were then formulated for uni-molecular chemical transformations, multi-molecular chemical and biochemical transformations (Baianu, 1983,2004a). Previous applications of computer modeling, classical automata theory, and relational biology to molecular biology, oncogenesis and medicine were extensively reviewed and several important conclusions were reached regarding both the potential and limitations of the computation-assisted modeling of biological systems, and especially complex organisms such as Homo sapiens sapiens(Baianu,1987). Novel approaches to solving the realization problems of Relational Biology models in Complex System Biology are introduced in terms of natural transformations between functors of such molecular categories. Several applications of such natural transformations of functors were then presented to protein biosynthesis, embryogenesis and nuclear transplant experiments. Other possible realizations in Molecular Biology and Relational Biology of Organisms are here suggested in terms of quantum automata models of Quantum Genetics and Interactomics. Future developments of this novel approach are likely to also include: Fuzzy Relations in Biology and Epigenomics, Relational Biology modeling of Complex Immunological and Hormonal regulatory systems, n-categories and Topoi of Lukasiewicz Logic Algebras and Intuitionistic Logic (Heyting) Algebras for modeling nonlinear dynamics and cognitive processes in complex neural networks that are present in the human brain, as well as stochastic modeling of genetic networks in Lukasiewicz Logic Algebras

    On-line modeling and control via T-S fuzzy models for nonaffine nonlinear systems using a second type adaptive fuzzy approach

    Get PDF
    [[abstract]]This paper proposes a novel method for on-line modeling and robust adaptive control via Takagi-Sugeno (T-S) fuzzy models for nonaffine nonlinear systems, with external disturbances. The T-S fuzzy model is established to approximate the nonaffine nonlinear dynamic system in a linearized way. The so-called second type adaptive law is adopted, where not only the consequent part (the weighting factors) of fuzzy implications but also the antecedent part (the membership functions) of fuzzy implications are adjusted. Fuzzy B-spline membership functions (BMFs) are used for on-line tuning. Furthermore, the effect of all the unmodeled dynamics, BMF modeling errors and external disturbances on the tracking error is attenuated by a fuzzy error compensator which is also constructed from the T-S fuzzy model. In this paper, we can prove that the closed-loop system which is controlled by the proposed controller is stable and the tracking error will converge to zero. Three examples are simulated in order to confirm the effectiveness and applicability of the proposed methods in this paper.[[notice]]補正完
    corecore