3,587 research outputs found

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Nonlinear control systems laboratory

    Get PDF

    A mixed-signal fuzzy controller and its application to soft start of DC motors

    Get PDF
    Presents a mixed-signal fuzzy controller chip and its application to control of DC motors. The controller is based on a multiplexed architecture presented by the authors (1998), where building blocks are also described. We focus here on showing experimental results from an example implementation of this architecture as well as on illustrating its performance in an application that has been proposed and developed. The presented chip implements 64 rules, much more than the reported pure analog monolithic fuzzy controllers, while preserving most of their advantages. Specifically, the measured input-output delay is around 500 ns for a power consumption of 16 mW and the chip area (without pads) is 2.65 mm/sup 2/. In the presented application, sensed motor speed and current are the controller input, while it determines the proper duty cycle to a PWM control circuit for the DC-DC converter that powers the motor drive. Experimental results of this application are also presented.Comisión Interministerial de Ciencia y Tecnología TIC99-082

    Navigation and Control of Automated Guided Vehicle using Fuzzy Inference System and Neural Network Technique

    Get PDF
    Automatic motion planning and navigation is the primary task of an Automated Guided Vehicle (AGV) or mobile robot. All such navigation systems consist of a data collection system, a decision making system and a hardware control system. Artificial Intelligence based decision making systems have become increasingly more successful as they are capable of handling large complex calculations and have a good performance under unpredictable and imprecise environments. This research focuses on developing Fuzzy Logic and Neural Network based implementations for the navigation of an AGV by using heading angle and obstacle distances as inputs to generate the velocity and steering angle as output. The Gaussian, Triangular and Trapezoidal membership functions for the Fuzzy Inference System and the Feed forward back propagation were developed, modelled and simulated on MATLAB. The reserach presents an evaluation of the four different decision making systems and a study has been conducted to compare their performances. The hardware control for an AGV should be robust and precise. For practical implementation a prototype, that functions via DC servo motors and a gear systems, was constructed and installed on a commercial vehicle

    Application of fuzzy logic controller to enhance the semi-SWATH performance in following seas

    Get PDF
    Semi-SWATH ship has a different characteristics compared to the common ship hull. The ship has a tendency to suffer bow-dive due to low restoring force at bow when running in following seas. In some conditions, the fore deck found to be immersed under the rear of wave. Acceleration motion to the trough increases the momentum force that pushing the ship to dive. The condition may cause the ship has a loss of control even the crew can feel thrown forward. In this research, fin stabilizer was applied to reduce the effect of those conditions with application of fuzzy logic controller. The controller calculates the angle for the fin stabilizer based on the pitch angle. The fin at both ends of the ship's hull increase the lift force, reduce the trim angle, and restrain the ship from dynamic high acceleration. A numeric time-domain program developed to analyze the ship sea keeping in following sea. The results showed the controller of the fin stabilizer has a significant effect in preventing the ship from the unsafe conditio

    Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns

    Get PDF
    In this paper, a backpropagating constraints-based trajectory tracking control (BCTTC) scheme is addressed for trajectory tracking of a quadrotor with complex unknowns and cascade constraints arising from constrained actuator dynamics, including saturations and dead zones. The entire quadrotor system including actuator dynamics is decomposed into five cascade subsystems connected by intermediate saturated nonlinearities. By virtue of the cascade structure, backpropagating constraints (BCs) on intermediate signals are derived from constrained actuator dynamics suffering from nonreversible rotations and nonnegative squares of rotors, and decouple subsystems with saturated connections. Combining with sliding-mode errors, BC-based virtual controls are individually designed by addressing underactuation and cascade constraints. In order to remove smoothness requirements on intermediate controls, first-order filters are employed, and thereby contributing to backstepping-like subcontrollers synthesizing in a recursive manner. Moreover, universal adaptive compensators are exclusively devised to dominate intermediate tracking residuals and complex unknowns. Eventually, the closed-loop BCTTC system stability can be ensured by the Lyapunov synthesis, and trajectory tracking errors can be made arbitrarily small. Simulation studies demonstrate the effectiveness and superiority of the proposed BCTTC scheme for a quadrotor with complex constrains and unknowns
    corecore