61,106 research outputs found

    Gating Artificial Neural Network Based Soft Sensor

    Get PDF
    This work proposes a novel approach to Soft Sensor modelling, where the Soft Sensor is built by a set of experts which are artificial neural networks with randomly generated topology. For each of the experts a meta neural network is trained, the gating Artificial Neural Network. The role of the gating network is to learn the performance of the experts in dependency on the input data samples. The final prediction of the Soft Sensor is a weighted sum of the individual experts predictions. The proposed meta-learning method is evaluated on two different process industry data sets

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Laparoscopy Pneumoperitoneum Fuzzy Modeling

    Get PDF
    Abstract: Gas volume to intra-peritoneal pressure fuzzy modeling for evaluating pneumoperitoneum in videolaparoscopic surgery is proposed in this paper. The proposed approach innovates in using fuzzy logic and fuzzy set theory for evaluating the accuracy of the prognosis value in order to minimize or avoid iatrogenic injuries due to the blind needle puncture. In so doing, it demonstrates the feasibility of fuzzy analysis to contribute to medicine and health care. Fuzzy systems is employed here in synergy with artificial neural network based on backpropaga tion, multilayer perceptron architecture for building up numerical functions. Experimental data employed for analysis were collected in the accomplishment of the pneumoperitoneum in a random population of patients submitted to videolaparoscopic surgeries. Numerical results indicate that the proposed fuzzy mapping for describing the relation from the intra peritoneal pressure measures as function injected gas volumes succeeded in determinining a fuzzy model for this nonlinear system when compared to the statistical model

    Fuzzy-based Propagation of Prior Knowledge to Improve Large-Scale Image Analysis Pipelines

    Get PDF
    Many automatically analyzable scientific questions are well-posed and offer a variety of information about the expected outcome a priori. Although often being neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and the direct information about the ambiguity inherent in the extracted data. We present a new concept for the estimation and propagation of uncertainty involved in image analysis operators. This allows using simple processing operators that are suitable for analyzing large-scale 3D+t microscopy images without compromising the result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it enhance the result quality of various processing operators. All presented concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. Furthermore, the functionality of the proposed approach is validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. Especially, the automated analysis of terabyte-scale microscopy data will benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. The generality of the concept, however, makes it also applicable to practically any other field with processing strategies that are arranged as linear pipelines.Comment: 39 pages, 12 figure

    Application of Computational Intelligence Techniques to Process Industry Problems

    Get PDF
    In the last two decades there has been a large progress in the computational intelligence research field. The fruits of the effort spent on the research in the discussed field are powerful techniques for pattern recognition, data mining, data modelling, etc. These techniques achieve high performance on traditional data sets like the UCI machine learning database. Unfortunately, this kind of data sources usually represent clean data without any problems like data outliers, missing values, feature co-linearity, etc. common to real-life industrial data. The presence of faulty data samples can have very harmful effects on the models, for example if presented during the training of the models, it can either cause sub-optimal performance of the trained model or in the worst case destroy the so far learnt knowledge of the model. For these reasons the application of present modelling techniques to industrial problems has developed into a research field on its own. Based on the discussion of the properties and issues of the data and the state-of-the-art modelling techniques in the process industry, in this paper a novel unified approach to the development of predictive models in the process industry is presented

    sEMG based Techniques to Detect and Predict Localised Muscle Fatigue

    Get PDF
    corecore