293 research outputs found

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Smart sensing systems for in-home health status and emotional well-being monitoring during COVID-19

    Get PDF
    The COVID-19 pandemic has restricted the mobility of the population. The experts propose several solutions in order to decrease the number of patients infected with this new virus by treating and monitoring them within the comfort of their own home. A new direction for the research has been identified including healthcare smart sensing systems which can provide medical diagnoses, surveillance, and treatment partially or totally remotely. The field of wearable, smart sensing solutions is becoming nowadays a widely accepted solution characterized also by the increased level of acceptance with regard to home health status monitoring. Pervasive computing and wearable solutions are frequently a topic included in current projects and are expected in new future developments, particularly in the pandemic context which forces people to remain mostly at home. As part of wearable devices the design of textiles, computer science, and smart materials are the three major development directions. The latest developments associated with the monitoring of health status and emotional well-being are presented and discussed in this chapter.info:eu-repo/semantics/submittedVersio

    Nonlinear robust control of functional electrical stimulation system for paraplegia

    Get PDF
    The study was directed towards enhancing Functional Electrical Stimulation (FES) for sit-to-stand movement restoration in paraplegia subjects. The scarcity of FES assistive devices was due to the inability of the developed equipment to attain clinical acceptance. Applications of control systems have shown fruitful results. And based on the literature, further improvements in model, trajectory and control systems are needed. Model with a higher level of accuracy and continuous as well as bump-free trajectories are essential ingredients for better control systems. The control systems can be enhanced by giving considering to changes in mass of the subject, disturbance rejection and stability. Hence, the comprehensive control scheme is necessary for this application as well as a better model and trajectory. In modelling an additional joint has been considered to improve the accuracy. In trajectory planning, the six-order polynomial has been used to refine the desired trajectory. The comprehensive control systems have been designed with consideration of robustness, disturbance rejection, and stability. Three nonlinear control approaches have been investigated; the Sliding Mode Control (SMC), Feedback Linearisation Control (FLC), and Back-Stepping Control (BSC). Results reveal improvements in the accuracy of the kinematic model by 24%, and the dynamic model by 47%. The trajectory planning parameters are continuous, and not susceptible to jerks or spikes. Execution time enhanced by 11%, the upper and lower terminal velocities improved by 16.9% and 20.9% respectively. The system response without disturbance shows good results with the SMC, FLC, and BSC. Revelations by robustness examination also maintain remarkable enhancements in the parameters with both 53% and 126% mass. The results for disturbance rejection examinations with fatigue, spasm, tremor, and combined disturbance effects showed sustenance of refinement in the response parameters. Therefore, indicating improvements despite the changes to the system. The BSC showed the best performance, followed by the FLC, and the SMC. Hence, the BSC is recommended for such systems

    A survey on bio-signal analysis for human-robot interaction

    Get PDF
    The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems
    • …
    corecore