7,820 research outputs found

    A possibilistic approach to latent structure analysis for symmetric fuzzy data.

    Get PDF
    In many situations the available amount of data is huge and can be intractable. When the data set is single valued, latent structure models are recognized techniques, which provide a useful compression of the information. This is done by considering a regression model between observed and unobserved (latent) fuzzy variables. In this paper, an extension of latent structure analysis to deal with fuzzy data is proposed. Our extension follows the possibilistic approach, widely used both in the cluster and regression frameworks. In this case, the possibilistic approach involves the formulation of a latent structure analysis for fuzzy data by optimization. Specifically, a non-linear programming problem in which the fuzziness of the model is minimized is introduced. In order to show how our model works, the results of two applications are given.Latent structure analysis, symmetric fuzzy data set, possibilistic approach.

    Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A Fuzzy Data Envelopment Analysis Approach

    Get PDF
    This article integrates fuzzy set theory in Data Envelopment Analysis (DEA) framework to compute technical efficiency scores when input and output data are imprecise. The underlying assumption in convectional DEA is that inputs and outputs data are measured with precision. However, production agriculture takes place in an uncertain environment and, in some situations, input and output data may be imprecise. We present an approach of measuring efficiency when data is known to lie within specified intervals and empirically illustrate this approach using a group of 34 dairy producers in Pennsylvania. Compared to the convectional DEA scores that are point estimates, the computed fuzzy efficiency scores allow the decision maker to trace the performance of a decision-making unit at different possibility levels.fuzzy set theory, Data Envelopment Analysis, membership function, α-cut level, technical efficiency, Farm Management, Production Economics, Productivity Analysis, Research Methods/ Statistical Methods, Risk and Uncertainty, D24, Q12, C02, C44, C61,

    Fuzzy Interval-Valued Multi Criteria Based Decision Making for Ranking Features in Multi-Modal 3D Face Recognition

    Get PDF
    Soodamani Ramalingam, 'Fuzzy interval-valued multi criteria based decision making for ranking features in multi-modal 3D face recognition', Fuzzy Sets and Systems, In Press version available online 13 June 2017. This is an Open Access paper, made available under the Creative Commons license CC BY 4.0 https://creativecommons.org/licenses/by/4.0/This paper describes an application of multi-criteria decision making (MCDM) for multi-modal fusion of features in a 3D face recognition system. A decision making process is outlined that is based on the performance of multi-modal features in a face recognition task involving a set of 3D face databases. In particular, the fuzzy interval valued MCDM technique called TOPSIS is applied for ranking and deciding on the best choice of multi-modal features at the decision stage. It provides a formal mechanism of benchmarking their performances against a set of criteria. The technique demonstrates its ability in scaling up the multi-modal features.Peer reviewedProo

    A framework of distributionally robust possibilistic optimization

    Full text link
    In this paper, an optimization problem with uncertain constraint coefficients is considered. Possibility theory is used to model the uncertainty. Namely, a joint possibility distribution in constraint coefficient realizations, called scenarios, is specified. This possibility distribution induces a necessity measure in scenario set, which in turn describes an ambiguity set of probability distributions in scenario set. The distributionally robust approach is then used to convert the imprecise constraints into deterministic equivalents. Namely, the left-hand side of an imprecise constraint is evaluated by using a risk measure with respect to the worst probability distribution that can occur. In this paper, the Conditional Value at Risk is used as the risk measure, which generalizes the strict robust and expected value approaches, commonly used in literature. A general framework for solving such a class of problems is described. Some cases which can be solved in polynomial time are identified

    A Procedure for Extending Input Selection Algorithms to Low Quality Data in Modelling Problems with Application to the Automatic Grading of Uploaded Assignments

    Get PDF
    When selecting relevant inputs in modeling problems with low quality data, the ranking of the most informative inputs is also uncertain. In this paper, this issue is addressed through a new procedure that allows the extending of different crisp feature selection algorithms to vague data. The partial knowledge about the ordinal of each feature is modelled by means of a possibility distribution, and a ranking is hereby applied to sort these distributions. It will be shown that this technique makes the most use of the available information in some vague datasets. The approach is demonstrated in a real-world application. In the context of massive online computer science courses, methods are sought for automatically providing the student with a qualification through code metrics. Feature selection methods are used to find the metrics involved in the most meaningful predictions. In this study, 800 source code files, collected and revised by the authors in classroom Computer Science lectures taught between 2013 and 2014, are analyzed with the proposed technique, and the most relevant metrics for the automatic grading task are discussed.This work was supported by the Spanish Ministerio de EconomĂ­a y Competitividad under Project TIN2011-24302, including funding from the European Regional Development Fund

    A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data

    Get PDF
    The current financial crisis has stressed the need to obtain more accurate prediction models in order to decrease risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle real-world imbalanced financial datasets without using sampling techniques that might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on interval-valued fuzzy rule-based classification system with tuning and rule selection (IVTURS FA RC-HD ) for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good prediction accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and, thus, avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including 11 real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1, and interval-valued fuzzy counterparts that use the synthetic minority oversampling technique (SMOTE) to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost-sensitive C4.5, and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids preprocessing techniques, and it provides interpretable models that allow obtaining more accurate results
    • 

    corecore