14 research outputs found

    Image Superresolution Reconstruction via Granular Computing Clustering

    Get PDF
    The problem of generating a superresolution (SR) image from a single low-resolution (LR) input image is addressed via granular computing clustering in the paper. Firstly, and the training images are regarded as SR image and partitioned into some SR patches, which are resized into LS patches, the training set is composed of the SR patches and the corresponding LR patches. Secondly, the granular computing (GrC) clustering is proposed by the hypersphere representation of granule and the fuzzy inclusion measure compounded by the operation between two granules. Thirdly, the granule set (GS) including hypersphere granules with different granularities is induced by GrC and used to form the relation between the LR image and the SR image by lasso. Experimental results showed that GrC achieved the least root mean square errors between the reconstructed SR image and the original image compared with bicubic interpolation, sparse representation, and NNLasso

    Machine learning based data pre-processing for the purpose of medical data mining and decision support

    Get PDF
    Building an accurate and reliable model for prediction for different application domains, is one of the most significant challenges in knowledge discovery and data mining. Sometimes, improved data quality is itself the goal of the analysis, usually to improve processes in a production database and the designing of decision support. As medicine moves forward there is a need for sophisticated decision support systems that make use of data mining to support more orthodox knowledge engineering and Health Informatics practice. However, the real-life medical data rarely complies with the requirements of various data mining tools. It is often inconsistent, noisy, containing redundant attributes, in an unsuitable format, containing missing values and imbalanced with regards to the outcome class label.Many real-life data sets are incomplete, with missing values. In medical data mining the problem with missing values has become a challenging issue. In many clinical trials, the medical report pro-forma allow some attributes to be left blank, because they are inappropriate for some class of illness or the person providing the information feels that it is not appropriate to record the values for some attributes. The research reported in this thesis has explored the use of machine learning techniques as missing value imputation methods. The thesis also proposed a new way of imputing missing value by supervised learning. A classifier was used to learn the data patterns from a complete data sub-set and the model was later used to predict the missing values for the full dataset. The proposed machine learning based missing value imputation was applied on the thesis data and the results are compared with traditional Mean/Mode imputation. Experimental results show that all the machine learning methods which we explored outperformed the statistical method (Mean/Mode).The class imbalance problem has been found to hinder the performance of learning systems. In fact, most of the medical datasets are found to be highly imbalance in their class label. The solution to this problem is to reduce the gap between the minority class samples and the majority class samples. Over-sampling can be applied to increase the number of minority class sample to balance the data. The alternative to over-sampling is under-sampling where the size of majority class sample is reduced. The thesis proposed one cluster based under-sampling technique to reduce the gap between the majority and minority samples. Different under-sampling and over-sampling techniques were explored as ways to balance the data. The experimental results show that for the thesis data the new proposed modified cluster based under-sampling technique performed better than other class balancing techniques.In further research it is found that the class imbalance problem not only affects the classification performance but also has an adverse effect on feature selection. The thesis proposed a new framework for feature selection for class imbalanced datasets. The research found that, using the proposed framework the classifier needs less attributes to show high accuracy, and more attributes are needed if the data is highly imbalanced.The research described in the thesis contains the flowing four novel main contributions.a) Improved data mining methodology for mining medical datab) Machine learning based missing value imputation methodc) Cluster Based semi-supervised class balancing methodd) Feature selection framework for class imbalance datasetsThe performance analysis and comparative study show that the use of proposed method of missing value imputation, class balancing and feature selection framework can provide an effective approach to data preparation for building medical decision support

    A fuzzy probabilistic inference methodology for constrained 3D human motion classification

    Get PDF
    Enormous uncertainties in unconstrained human motions lead to a fundamental challenge that many recognising algorithms have to face in practice: efficient and correct motion recognition is a demanding task, especially when human kinematic motions are subject to variations of execution in the spatial and temporal domains, heavily overlap with each other,and are occluded. Due to the lack of a good solution to these problems, many existing methods tend to be either effective but computationally intensive or efficient but vulnerable to misclassification. This thesis presents a novel inference engine for recognising occluded 3D human motion assisted by the recognition context. First, uncertainties are wrapped into a fuzzy membership function via a novel method called Fuzzy Quantile Generation which employs metrics derived from the probabilistic quantile function. Then, time-dependent and context-aware rules are produced via a genetic programming to smooth the qualitative outputs represented by fuzzy membership functions. Finally, occlusion in motion recognition is taken care of by introducing new procedures for feature selection and feature reconstruction. Experimental results demonstrate the effectiveness of the proposed framework on motion capture data from real boxers in terms of fuzzy membership generation, context-aware rule generation, and motion occlusion. Future work might involve the extension of Fuzzy Quantile Generation in order to automate the choice of a probability distribution, the enhancement of temporal pattern recognition with probabilistic paradigms, the optimisation of the occlusion module, and the adaptation of the present framework to different application domains.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Relative-fuzzy: a novel approach for handling complex ambiguity for software engineering of data mining models

    Get PDF
    There are two main defined classes of uncertainty namely: fuzziness and ambiguity, where ambiguity is ‘one-to-many’ relationship between syntax and semantic of a proposition. This definition seems that it ignores ‘many-to-many’ relationship ambiguity type of uncertainty. In this thesis, we shall use complex-uncertainty to term many-to-many relationship ambiguity type of uncertainty. This research proposes a new approach for handling the complex ambiguity type of uncertainty that may exist in data, for software engineering of predictive Data Mining (DM) classification models. The proposed approach is based on Relative-Fuzzy Logic (RFL), a novel type of fuzzy logic. RFL defines a new formulation of the problem of ambiguity type of uncertainty in terms of States Of Proposition (SOP). RFL describes its membership (semantic) value by using the new definition of Domain of Proposition (DOP), which is based on the relativity principle as defined by possible-worlds logic. To achieve the goal of proposing RFL, a question is needed to be answered, which is: how these two approaches; i.e. fuzzy logic and possible-world, can be mixed to produce a new membership value set (and later logic) that able to handle fuzziness and multiple viewpoints at the same time? Achieving such goal comes via providing possible world logic the ability to quantifying multiple viewpoints and also model fuzziness in each of these multiple viewpoints and expressing that in a new set of membership value. Furthermore, a new architecture of Hierarchical Neural Network (HNN) called ML/RFL-Based Net has been developed in this research, along with a new learning algorithm and new recalling algorithm. The architecture, learning algorithm and recalling algorithm of ML/RFL-Based Net follow the principles of RFL. This new type of HNN is considered to be a RFL computation machine. The ability of the Relative Fuzzy-based DM prediction model to tackle the problem of complex ambiguity type of uncertainty has been tested. Special-purpose Integrated Development Environment (IDE) software, which generates a DM prediction model for speech recognition, has been developed in this research too, which is called RFL4ASR. This special purpose IDE is an extension of the definition of the traditional IDE. Using multiple sets of TIMIT speech data, the prediction model of type ML/RFL-Based Net has classification accuracy of 69.2308%. This accuracy is higher than the best achievements of WEKA data mining machines given the same speech data

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields

    Agents in the market place an exploratory study on using intelligent agents to trade financial instruments

    Get PDF
    Tese de doutoramento em InformáticaThis dissertation documents our exploratory research aimed at investigating the utilization of intelligent agents in the development of automated financial trading strategies. In order to demonstrate this potential use for agent technology, we propose a hybrid cognitive architecture meant for the creation of autonomous agents capable of trading different types of financial instruments. This architecture was used to implement 10 currency trading agents and 25 stock trading agents. Their overall performance, evaluated according to the cumulative return and the maximum drawdown metrics, was found to be acceptable in a reasonably long simulation period. In order to improve this performance, we defined negotiation protocols that allowed the integration of the 35 trading agents in a multi-agent system, which proved to be better suited for withstanding sudden market events, due to the diversification of the investments. This system obtained very promising results, and remains open to many obvious improvements. Our findings lead us to conclude that there is indeed a place for intelligent agents in the financial industry; in particular, they hold the potential to be employed in the establishment of investment companies where software agents make all the trading decisions, with human intervention being relegated to simple administrative tasks.Esta dissertação documenta um estudo exploratório destinado a investigar a utilização de agentes inteligentes no desenvolvimento de estratégias de investimento financeiro automatizadas. Para demonstrar este uso potencial para tecnologia de agentes, foi proposta uma arquitectura cognitiva híbrida destinada à criação de agentes autónomos capazes de negociar diferentes tipos de instrumentos financeiros. Esta arquitectura foi utilizada para implementar 10 agentes que negoceiam pares cambiais, e 25 agentes que negoceiam acções. A performance global destes agentes, avaliada de acordo com as métricas de retorno acumulado e drawdown máximo, foi considerada aceitável ao longo de um período de simulação relativamente longo. Para melhorar esta performance, foram definidos protocolos de negociação que permitiram a integração dos 35 agentes num sistema multi-agente, que demonstrou estar melhor preparado para enfrentar alterações súbitas nos mercados, devido à diversificação dos investimentos. Este sistema obteve resultados muito promissores, e pode ainda ser sujeito a diversos melhoramentos. Os nossos resultados indiciam que os agentes inteligentes podem ocupar um lugar de relevo na indústria financeira; em particular, aparentam ter potencial suficiente para serem aplicados na criação de fundos de investimento onde todas as decisões de negociação são efectuadas por agentes de software, sendo a intervenção humana relegada para tarefas administrativas básicas

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore