3,443 research outputs found

    Driving a car with custom-designed fuzzy inferencing VLSI chips and boards

    Get PDF
    Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips were developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 microseconds, and therefore, making control of 'reflex-type' of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-priori unknown environments are first discussed. Then how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data is described. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulation results as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and some human-like reasoning schemes which may include as little as six elemental behaviors embodied in fourteen qualitative rules

    A novel visual tracking scheme for unstructured indoor environments

    Get PDF
    In the ever-expanding sphere of assistive robotics, the pressing need for advanced methods capable of accurately tracking individuals within unstructured indoor settings has been magnified. This research endeavours to devise a realtime visual tracking mechanism that encapsulates high performance attributes while maintaining minimal computational requirements. Inspired by the neural processes of the human brain’s visual information handling, our innovative algorithm employs a pattern image, serving as an ephemeral memory, which facilitates the identification of motion within images. This tracking paradigm was subjected to rigorous testing on a Nao humanoid robot, demonstrating noteworthy outcomes in controlled laboratory conditions. The algorithm exhibited a remarkably low false detection rate, less than 4%, and target losses were recorded in merely 12% of instances, thus attesting to its successful operation. Moreover, the algorithm’s capacity to accurately estimate the direct distance to the target further substantiated its high efficacy. These compelling findings serve as a substantial contribution to assistive robotics. The proficient visual tracking methodology proposed herein holds the potential to markedly amplify the competencies of robots operating in dynamic, unstructured indoor settings, and set the foundation for a higher degree of complex interactive tasks

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Fuzzy Logic Based Navigation of Mobile Robots

    Get PDF

    Expanding Navigation Systems by Integrating It with Advanced Technologies

    Get PDF
    Navigation systems provide the optimized route from one location to another. It is mainly assisted by external technologies such as Global Positioning System (GPS) and satellite-based radio navigation systems. GPS has many advantages such as high accuracy, available anywhere, reliable, and self-calibrated. However, GPS is limited to outdoor operations. The practice of combining different sources of data to improve the overall outcome is commonly used in various domains. GIS is already integrated with GPS to provide the visualization and realization aspects of a given location. Internet of things (IoT) is a growing domain, where embedded sensors are connected to the Internet and so IoT improves existing navigation systems and expands its capabilities. This chapter proposes a framework based on the integration of GPS, GIS, IoT, and mobile communications to provide a comprehensive and accurate navigation solution. In the next section, we outline the limitations of GPS, and then we describe the integration of GIS, smartphones, and GPS to enable its use in mobile applications. For the rest of this chapter, we introduce various navigation implementations using alternate technologies integrated with GPS or operated as standalone devices

    Automated steering design using Neural Network

    Get PDF
    If you don't move forward-you begin to move backward. Technological advancement today has brought us to a frontier where the human has become the basic constraint in our ascent towards safer and faster transportation. Human error is mostly responsible for many road traffic accidents which every year take the lives of lots of people and injure many more. Driving protection is thus a major concern leading to research in autonomous driving systems. Automatic motion planning and navigation is the primary task of an automated guided vehicle or mobile robots. All such navigation systems consist of a data collection system, a decision making system and a hardware control system. In this research our artificial intelligence system is based on neural network model for navigation of an AGV in unpredictable and imprecise environment. A five layered with gradient descent momentum back-propagation system which uses heading angle and obstacle distances as input. The networks are trained by real data obtained from vehicle tracking live test runs. Considering the high amount of risk of testing the vehicle in real space-time conditions, it would initially be tested in simulated environment with the use of MATLAB®. The hardware control for an AGV should be robust and precise. An Aerial and a Grounded prototype were developed to test our neural network model in real time situation

    Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning to Segment Driveability in Egocentric Images

    Get PDF
    This work tackles scene understanding for outdoor robotic navigation, solely relying on images captured by an on-board camera. Conventional visual scene understanding interprets the environment based on specific descriptive categories. However, such a representation is not directly interpretable for decision-making and constrains robot operation to a specific domain. Thus, we propose to segment egocentric images directly in terms of how a robot can navigate in them, and tailor the learning problem to an autonomous navigation task. Building around an image segmentation network, we present a generic affordance consisting of 3 driveability levels which can broadly apply to both urban and off-road scenes. By encoding these levels with soft ordinal labels, we incorporate inter-class distances during learning which improves segmentation compared to standard "hard" one-hot labelling. In addition, we propose a navigation-oriented pixel-wise loss weighting method which assigns higher importance to safety-critical areas. We evaluate our approach on large-scale public image segmentation datasets ranging from sunny city streets to snowy forest trails. In a cross-dataset generalization experiment, we show that our affordance learning scheme can be applied across a diverse mix of datasets and improves driveability estimation in unseen environments compared to general-purpose, single-dataset segmentation.Comment: Accepted in Robotics and Automation Letters (RA-L 2022). Supplementary video available at https://youtu.be/q_XfjUDO39
    corecore