10,330 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    A systematic literature review on source code similarity measurement and clone detection: techniques, applications, and challenges

    Full text link
    Measuring and evaluating source code similarity is a fundamental software engineering activity that embraces a broad range of applications, including but not limited to code recommendation, duplicate code, plagiarism, malware, and smell detection. This paper proposes a systematic literature review and meta-analysis on code similarity measurement and evaluation techniques to shed light on the existing approaches and their characteristics in different applications. We initially found over 10000 articles by querying four digital libraries and ended up with 136 primary studies in the field. The studies were classified according to their methodology, programming languages, datasets, tools, and applications. A deep investigation reveals 80 software tools, working with eight different techniques on five application domains. Nearly 49% of the tools work on Java programs and 37% support C and C++, while there is no support for many programming languages. A noteworthy point was the existence of 12 datasets related to source code similarity measurement and duplicate codes, of which only eight datasets were publicly accessible. The lack of reliable datasets, empirical evaluations, hybrid methods, and focuses on multi-paradigm languages are the main challenges in the field. Emerging applications of code similarity measurement concentrate on the development phase in addition to the maintenance.Comment: 49 pages, 10 figures, 6 table

    An advanced deep learning models-based plant disease detection: A review of recent research

    Get PDF
    Plants play a crucial role in supplying food globally. Various environmental factors lead to plant diseases which results in significant production losses. However, manual detection of plant diseases is a time-consuming and error-prone process. It can be an unreliable method of identifying and preventing the spread of plant diseases. Adopting advanced technologies such as Machine Learning (ML) and Deep Learning (DL) can help to overcome these challenges by enabling early identification of plant diseases. In this paper, the recent advancements in the use of ML and DL techniques for the identification of plant diseases are explored. The research focuses on publications between 2015 and 2022, and the experiments discussed in this study demonstrate the effectiveness of using these techniques in improving the accuracy and efficiency of plant disease detection. This study also addresses the challenges and limitations associated with using ML and DL for plant disease identification, such as issues with data availability, imaging quality, and the differentiation between healthy and diseased plants. The research provides valuable insights for plant disease detection researchers, practitioners, and industry professionals by offering solutions to these challenges and limitations, providing a comprehensive understanding of the current state of research in this field, highlighting the benefits and limitations of these methods, and proposing potential solutions to overcome the challenges of their implementation

    Birth of dairy 4.0: opportunities and challenges in adoption of fourth industrial revolution technologies in the production of milk and its derivative

    Get PDF
    Embracing innovation and emerging technologies is becoming increasingly important to address the current global challenges facing many food industry sectors, including the dairy industry. Growing literature shows that the adoption of technologies of the fourth industrial revolution (named Industry 4.0) has promising potential to bring about breakthroughs and new insights and unlock advancement opportunities in many areas of the food manufacturing sector. This article discusses the current knowledge and recent trends and progress on the application of Industry 4.0 innovations in the dairy industry. First, the “Dairy 4.0” concept, inspired by Industry 4.0, is introduced and its enabling technologies are determined. Second, relevant examples of the use of Dairy 4.0 technologies in milk and its derived products are presented. Finally, conclusions and future perspectives are given. The results revealed that robotics, 3D printing, Artificial Intelligence, the Internet of Things, Big Data, and blockchain are the main enabling technologies of Dairy 4.0. These advanced technologies are being progressively adopted in the dairy sector, from farm to table, making significant and profound changes in the production of milk, cheese, and other dairy products. It is expected that, in the near future, new digital innovations will emerge, and greater implementations of Dairy 4.0 technologies is likely to be achieved, leading to more automation and optimization of this dynamic food sector

    Detecting Energy Theft in Different Regions Based on Convolutional and Joint Distribution Adaptation

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TIM.2023.3291769Electricity theft has been a major concern all over the world. There are great differences in electricity consumption among residents from different regions. However, existing supervised methods of machine learning are not in detecting electricity theft from different regions, while the development of transfer learning provides a new view for solving the problem. Hence, an electricity-theft detection method based on Convolutional and Joint Distribution Adaptation(CJDA) is proposed. In particular, the model consists of three components: convolutional component (Conv), Marginal Distribution Adaptation(MDA) and Conditional Distribution Adaptation(CDA). The convolutional component can efficiently extract the customer’s electricity characteristics. The Marginal Distribution Adaptation can match marginal probability distributions and solve the discrepancies of residents from different regions while Conditional Distribution Adaptation can reduce the difference of the conditional probability distributions and enhance the discrimination of features between energy thieves and normal residents. As a result, the model can find a matrix to adapt the electricity residents in different regions to achieve electricity theft detection. The experiments are conducted on electricity consumption data from the Irish Smart Energy Trial and State Grid Corporation of China and metrics including ACC, Recall, FPR, AUC and F1Score are used for evaluation. Compared with other methods including some machine learning methods such as DT, RF and XGBoost, some deep learning methods such as RNN, CNN and Wide & Deep CNN and some up-to-date methods such as BDA, WBDA, ROCKET and MiniROCKET, our proposed method has a better effect on identifying electricity theft from different regions.Peer reviewe

    TrackSafe: a comparative study of data-driven techniques for automated railway track fault detection using image datasets

    Get PDF
    Railway track accidents continue to occur despite manual inspections, which are often inaccurate and can lead to catastrophic events. While artificial intelligence has been applied in the railway sector, few studies have focused on defect detection using object detection tools. Additionally, there is a lack of studies that compare different models using the same dataset. This paper proposes new data-driven techniques that identify railway track faults using three object detection models: YOLOv5, Faster RCNN, and EfficientDet. These models are compared by testing a dataset of 31 images that contain three different railway track elements (clip, rail, and fishplate), both faulty and non-faulty. Six classes were differentiated in the training of the models: one faulty and one non-faulty for each of the three classes. Image pre-processing steps included data augmentation techniques and image resizing. Results show good precision (equivalent to 1) in detecting non-defective elements, but recall values for defective elements vary among models, with Faster RCNN performing the best (0.93), followed by EfficientDet (0.81), and YOLOv5 (0.68). The full paper discusses the strengths and weaknesses of these proposed techniques for railway fault detection

    The State of the Art in Deep Learning Applications, Challenges, and Future Prospects::A Comprehensive Review of Flood Forecasting and Management

    Get PDF
    Floods are a devastating natural calamity that may seriously harm both infrastructure and people. Accurate flood forecasts and control are essential to lessen these effects and safeguard populations. By utilizing its capacity to handle massive amounts of data and provide accurate forecasts, deep learning has emerged as a potent tool for improving flood prediction and control. The current state of deep learning applications in flood forecasting and management is thoroughly reviewed in this work. The review discusses a variety of subjects, such as the data sources utilized, the deep learning models used, and the assessment measures adopted to judge their efficacy. It assesses current approaches critically and points out their advantages and disadvantages. The article also examines challenges with data accessibility, the interpretability of deep learning models, and ethical considerations in flood prediction. The report also describes potential directions for deep-learning research to enhance flood predictions and control. Incorporating uncertainty estimates into forecasts, integrating many data sources, developing hybrid models that mix deep learning with other methodologies, and enhancing the interpretability of deep learning models are a few of these. These research goals can help deep learning models become more precise and effective, which will result in better flood control plans and forecasts. Overall, this review is a useful resource for academics and professionals working on the topic of flood forecasting and management. By reviewing the current state of the art, emphasizing difficulties, and outlining potential areas for future study, it lays a solid basis. Communities may better prepare for and lessen the destructive effects of floods by implementing cutting-edge deep learning algorithms, thereby protecting people and infrastructure

    Consideration Set Sampling to Analyze Undecided Respondents

    Full text link
    Researchers in psychology characterize decision-making as a process of eliminating options. While statistical modelling typically focuses on the eventual choice, we analyze consideration sets describing, for each survey participant, all options between which the respondent is pondering. Using a German pre-election poll as a prototypical example, we give a proof of concept that consideration set sampling is easy to implement and provides the basis for an insightful structural analysis of the respondents' positions. The set-valued observations forming the consideration sets are naturally modelled as random sets, allowing to transfer regression modelling a

    Segmentation of Pathology Images: A Deep Learning Strategy with Annotated Data

    Get PDF
    Cancer has significantly threatened human life and health for many years. In the clinic, histopathology image segmentation is the golden stand for evaluating the prediction of patient prognosis and treatment outcome. Generally, manually labelling tumour regions in hundreds of high-resolution histopathological images is time-consuming and expensive for pathologists. Recently, the advancements in hardware and computer vision have allowed deep-learning-based methods to become mainstream to segment tumours automatically, significantly reducing the workload of pathologists. However, most current methods rely on large-scale labelled histopathological images. Therefore, this research studies label-effective tumour segmentation methods using deep-learning paradigms to relieve the annotation limitations. Chapter 3 proposes an ensemble framework for fully-supervised tumour segmentation. Usually, the performance of an individual-trained network is limited by significant morphological variances in histopathological images. We propose a fully-supervised learning ensemble fusion model that uses both shallow and deep U-Nets, trained with images of different resolutions and subsets of images, for robust predictions of tumour regions. Noise elimination is achieved with Convolutional Conditional Random Fields. Two open datasets are used to evaluate the proposed method: the ACDC@LungHP challenge at ISBI2019 and the DigestPath challenge at MICCAI2019. With a dice coefficient of 79.7 %, the proposed method takes third place in ACDC@LungHP. In DigestPath 2019, the proposed method achieves a dice coefficient 77.3 %. Well-annotated images are an indispensable part of training fully-supervised segmentation strategies. However, large-scale histopathology images are hardly annotated finely in clinical practice. It is common for labels to be of poor quality or for only a few images to be manually marked by experts. Consequently, fully-supervised methods cannot perform well in these cases. Chapter 4 proposes a self-supervised contrast learning for tumour segmentation. A self-supervised cancer segmentation framework is proposed to reduce label dependency. An innovative contrastive learning scheme is developed to represent tumour features based on unlabelled images. Unlike a normal U-Net, the backbone is a patch-based segmentation network. Additionally, data augmentation and contrastive losses are applied to improve the discriminability of tumour features. A convolutional Conditional Random Field is used to smooth and eliminate noise. Three labelled, and fourteen unlabelled images are collected from a private skin cancer dataset called BSS. Experimental results show that the proposed method achieves better tumour segmentation performance than other popular self-supervised methods. However, by evaluated on the same public dataset as chapter 3, the proposed self-supervised method is hard to handle fine-grained segmentation around tumour boundaries compared to the supervised method we proposed. Chapter 5 proposes a sketch-based weakly-supervised tumour segmentation method. To segment tumour regions precisely with coarse annotations, a sketch-supervised method is proposed, containing a dual CNN-Transformer network and a global normalised class activation map. CNN-Transformer networks simultaneously model global and local tumour features. With the global normalised class activation map, a gradient-based tumour representation can be obtained from the dual network predictions. We invited experts to mark fine and coarse annotations in the private BSS and the public PAIP2019 datasets to facilitate reproducible performance comparisons. Using the BSS dataset, the proposed method achieves 76.686 % IOU and 86.6 % Dice scores, outperforming state-of-the-art methods. Additionally, the proposed method achieves a Dice gain of 8.372 % compared with U-Net on the PAIP2019 dataset. The thesis presents three approaches to segmenting cancers from histology images: fully-supervised, unsupervised, and weakly supervised methods. This research effectively segments tumour regions based on histopathological annotations and well-designed modules. Our studies comprehensively demonstrate label-effective automatic histopathological image segmentation. Experimental results prove that our works achieve state-of-the-art segmentation performances on private and public datasets. In the future, we plan to integrate more tumour feature representation technologies with other medical modalities and apply them to clinical research

    Fault diagnosis in aircraft fuel system components with machine learning algorithms

    Get PDF
    There is a high demand and interest in considering the social and environmental effects of the component’s lifespan. Aircraft are one of the most high-priced businesses that require the highest reliability and safety constraints. The complexity of aircraft systems designs also has advanced rapidly in the last decade. Consequently, fault detection, diagnosis and modification/ repair procedures are becoming more challenging. The presence of a fault within an aircraft system can result in changes to system performances and cause operational downtime or accidents in a worst-case scenario. The CBM method that predicts the state of the equipment based on data collected is widely used in aircraft MROs. CBM uses diagnostics and prognostics models to make decisions on appropriate maintenance actions based on the Remaining Useful Life (RUL) of the components. The aircraft fuel system is a crucial system of aircraft, even a minor failure in the fuel system can affect the aircraft's safety greatly. A failure in the fuel system that impacts the ability to deliver fuel to the engine will have an immediate effect on system performance and safety. There are very few diagnostic systems that monitor the health of the fuel system and even fewer that can contain detected faults. The fuel system is crucial for the operation of the aircraft, in case of failure, the fuel in the aircraft will become unusable/unavailable to reach the destination. It is necessary to develop fault detection of the aircraft fuel system. The future aircraft fuel system must have the function of fault detection. Through the information of sensors and Machine Learning Techniques, the aircraft fuel system’s fault type can be detected in a timely manner. This thesis discusses the application of a Data-driven technique to analyse the healthy and faulty data collected using the aircraft fuel system model, which is similar to Boeing-777. The data is collected is processed through Machine learning Techniques and the results are comparedPhD in Manufacturin
    corecore