543 research outputs found

    Method based on data mining techniques for breast cancer recurrence analysis

    Get PDF
    Cancer is a constantly evolving disease, which affects a large number of people worldwide. Great efforts have been made at the research level for the development of tools based on data mining techniques that allow to detect or prevent breast cancer. The large volumes of data play a fundamental role according to the literature consulted, a great variety of dataset oriented to the analysis of the disease has been generated, in this research the Breast Cancer dataset was used, the purpose of the proposed research is to submit comparison of the J48 and randomforest, NaiveBayes and NaiveBayes Simple, SMO Poli-kernel and SMO RBF-Kernel classification algorithms, integrated with the Simple K-Means cluster algorithm for the generation of a model that allows the successful classification of patients who are or Non-recurring breast cancer after having previously undergone surgery for the treatment of said disease, finally the methods that obtained the best levels were SMO Poly-Kernel + Simple K-Means 98.5% of Precision, 98.5% recall, 98.5% TPRATE and 0.2% FPRATE. The results obtained suggest the possibility of using intelligent computational tools based on data mining methods for the detection of breast cancer recurrence in patients who had previously undergone surgery

    Medical Internet-of-Things Based Breast Cancer Diagnosis Using Hyperparameter-Optimized Neural Networks

    Get PDF
    In today’s healthcare setting, the accurate and timely diagnosis of breast cancer is critical for recovery and treatment in the early stages. In recent years, the Internet of Things (IoT) has experienced a transformation that allows the analysis of real-time and historical data using artificial intelligence (AI) and machine learning (ML) approaches. Medical IoT combines medical devices and AI applications with healthcare infrastructure to support medical diagnostics. The current state-of-the-art approach fails to diagnose breast cancer in its initial period, resulting in the death of most women. As a result, medical professionals and researchers are faced with a tremendous problem in early breast cancer detection. We propose a medical IoT-based diagnostic system that competently identifies malignant and benign people in an IoT environment to resolve the difficulty of identifying early-stage breast cancer. The artificial neural network (ANN) and convolutional neural network (CNN) with hyperparameter optimization are used for malignant vs. benign classification, while the Support Vector Machine (SVM) and Multilayer Perceptron (MLP) were utilized as baseline classifiers for comparison. Hyperparameters are important for machine learning algorithms since they directly control the behaviors of training algorithms and have a significant effect on the performance of machine learning models. We employ a particle swarm optimization (PSO) feature selection approach to select more satisfactory features from the breast cancer dataset to enhance the classification performance using MLP and SVM, while grid-based search was used to find the best combination of the hyperparameters of the CNN and ANN models. The Wisconsin Diagnostic Breast Cancer (WDBC) dataset was used to test the proposed approach. The proposed model got a classification accuracy of 98.5% using CNN, and 99.2% using ANN.publishedVersio

    An Interval Type-2 Fuzzy Association Rule Mining Approach to Pattern Discovery in Breast Cancer Dataset

    Get PDF
    In the literature, several methods explored to analyze breast cancer dataset have failed to sufficiently handle quantitative attribute sharp boundary problem to resolve inter and intra uncertainties in breast cancer dataset analysis. In this study an Interval Type-2 fuzzy association rule mining approach is proposed for pattern discovery in breast cancer dataset. In the first part of this analysis, the interval Type-2 fuzzification of the breast cancer dataset is carried out using Hao and Mendel approach. In the second part, FP-growth algorithm is adopted for associative pattern discovery from the fuzzified dataset from the first part. To define the intuitive words for breast cancer determinant factors and expert data interval, thirty (30) medical experts from specialized hospitals were consulted through questionnaire poling method. To establish the adequacy of the linguistic word defined by the expert, Jaccard similarity measure is used. This analysis is able to discover associative rules with minimum number of symptoms at confidence values as high as 91%. It also identifies High Bare Nuclei and High Uniformity of Cell Shape as strong determinant factors for diagnosing breast cancer. The proposed approach performed better in terms of rules generated when compared with traditional quantitative association rule mining. It is able to eliminate redundant rules which reduce the number of generated rules by 39.5% and memory usage by 22.6%. The discovered rules are viable in building a comprehensive and compact expert driven knowledge�base for breast cancer decision support or expert syste

    Homogeneous Datasets of Triple Negative Breast Cancers Enable the Identification of Novel Prognostic and Predictive Signatures

    Get PDF
    Background: Current prognostic gene signatures for breast cancer mainly reflect proliferation status and have limited value in triple-negative (TNBC) cancers. The identification of prognostic signatures from TNBC cohorts was limited in the past due to small sample sizes. Methodology/Principal Findings: We assembled all currently publically available TNBC gene expression datasets generated on Affymetrix gene chips. Inter-laboratory variation was minimized by filtering methods for both samples and genes. Supervised analysis was performed to identify prognostic signatures from 394 cases which were subsequently tested on an independent validation cohort (n = 261 cases). Conclusions/Significance: Using two distinct false discovery rate thresholds, 25% and <3.5%, a larger (n = 264 probesets) and a smaller (n = 26 probesets) prognostic gene sets were identified and used as prognostic predictors. Most of these genes were positively associated with poor prognosis and correlated to metagenes for inflammation and angiogenesis. No correlation to other previously published prognostic signatures (recurrence score, genomic grade index, 70-gene signature, wound response signature, 7-gene immune response module, stroma derived prognostic predictor, and a medullary like signature) was observed. In multivariate analyses in the validation cohort the two signatures showed hazard ratios of 4.03 (95% confidence interval [CI] 1.71–9.48; P = 0.001) and 4.08 (95% CI 1.79–9.28; P = 0.001), respectively. The 10-year event-free survival was 70% for the good risk and 20% for the high risk group. The 26-gene signatures had modest predictive value (AUC = 0.588) to predict response to neoadjuvant chemotherapy, however, the combination of a B-cell metagene with the prognostic signatures increased its response predictive value. We identified a 264-gene prognostic signature for TNBC which is unrelated to previously known prognostic signatures
    • …
    corecore