2,430 research outputs found

    A comparative study of using spindle motor power and eddy current for the detection of tool conditions in milling processes

    Get PDF
    This paper investigates the use of the power of the driving motor of a CNC spindle in comparison to two perpendicular eddy current sensors for the detection of tool wear in milling processes. Monitoring the power through the current profile is a low cost system which has been utilised in this study as an attempt to detect the fluctuation in the motor load as a result of the conditions of the cutting tool. Eddy current sensors are dedicated sensors that are installed on the spindle to measure the vibration of the rotating spindle in two axes. Experimental work has been conducted using fresh and worn tools to investigate the effect of tool conditions on the two sensory systems. Time domain features are utilised to compare between the two sensors in relation to this application. The results indicate that Eddy current sensors are found to be more successful and sensitive, in general, than the power of the motor in detecting the changes of the cutting tools during the machining operation. However, the kurtosis value of the power of the spindle has been found to be successful in predicting the tool conditions with high sensitivity

    Design methodology for smart actuator services for machine tool and machining control and monitoring

    Get PDF
    This paper presents a methodology to design the services of smart actuators for machine tools. The smart actuators aim at replacing the traditional drives (spindles and feed-drives) and enable to add data processing abilities to implement monitoring and control tasks. Their data processing abilities are also exploited in order to create a new decision level at the machine level. The aim of this decision level is to react to disturbances that the monitoring tasks detect. The cooperation between the computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables to carry out functions for accommodating or adapting to the disturbances. This leads to the extension of the notion of smart actuator with the notion of agent. In order to implement the services of the smart drives, a general design is presented describing the services as well as the behavior of the smart drive according to the object oriented approach. Requirements about the CNC unit are detailed. Eventually, an implementation of the smart drive services that involves a virtual lathe and a virtual turning operation is described. This description is part of the design methodology. Experimental results obtained thanks to the virtual machine are then presented

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Model-based observer proposal for surface roughness monitoring

    Get PDF
    ComunicaciĂłn presentada a MESIC 2019 8th Manufacturing Engineering Society International Conference (Madrid, 19-21 de Junio de 2019)In the literature, many different machining monitoring systems for surface roughness and tool condition have been proposed and validated experimentally. However, these approaches commonly require costly equipment and experimentation. In this paper, we propose an alternative monitoring system for surface roughness based on a model-based observer considering simple relationships between tool wear, power consumption and surface roughness. The system estimates the surface roughness according to simple models and updates the estimation fusing the information from quality inspection and power consumption. This monitoring strategy is aligned with the industry 4.0 practices and promotes the fusion of data at different shop-floor levels

    Smart Sensor Monitoring in Machining of Difficult-to-cut Materials

    Get PDF
    The research activities presented in this thesis are focused on the development of smart sensor monitoring procedures applied to diverse machining processes with particular reference to the machining of difficult-to-cut materials. This work will describe the whole smart sensor monitoring procedure starting from the configuration of the multiple sensor monitoring system for each specific application and proceeding with the methodologies for sensor signal detection and analysis aimed at the extraction of signal features to feed to intelligent decision-making systems based on artificial neural networks. The final aim is to perform tool condition monitoring in advanced machining processes in terms of tool wear diagnosis and forecast, in the perspective of zero defect manufacturing and green technologies. The work has been addressed within the framework of the national MIUR PON research project CAPRI, acronym for “Carrello per atterraggio con attuazione intelligente” (Landing Gear with Intelligent Actuation), and the research project STEP FAR, acronym for “Sviluppo di materiali e Tecnologie Ecocompatibili, di Processi di Foratura, taglio e di Assemblaggio Robotizzato” (Development of eco-compatible materials and technologies for robotised drilling and assembly processes). Both projects are sponsored by DAC, the Campania Technological Aerospace District, and involve two aerospace industries, Magnaghi Aeronautica S.p.A. and Leonardo S.p.A., respectively. Due to the industrial framework in which the projects were developed and taking advantage of the support from the industrial partners, the project activities have been carried out with the aim to contribute to the scientific research in the field of machining process monitoring as well as to promote the industrial applicability of the results. The thesis was structured in order to illustrate all the methodologies, the experimental tests and the results obtained from the research activities. It begins with an introduction to “Sensor monitoring of machining processes” (Chapter 2) with particular attention to the main sensor monitoring applications and the types of sensors which are employed in machining. The key methods for advanced sensor signal processing, including the implementation of sensor fusion technology, are discussed in details as they represent the basic input for cognitive decision-making systems construction. The chapter finally presents a brief discussion on cloud-based manufacturing which will represent one of the future developments of this research work. Chapters 3 and 4 illustrate the case studies of machining process sensor monitoring investigated in the research work. Within the CAPRI project, the feasibility of the dry turning process of Ti6Al4V alloy (Chapter 3) was studied with particular attention to the optimization of the machining parameters avoiding the use of coolant fluids. Since very rapid tool wear is experienced during dry machining of Titanium alloys, the multiple sensor monitoring system was used in order to develop a methodology based on a smart system for on line tool wear detection in terms of maximum flank wear land. Within the STEP FAR project, the drilling process of carbon fibre reinforced (CFRP) composite materials was studied using diverse experimental set-ups. Regarding the tools, three different types of drill bit were employed, including traditional as well as innovative geometry ones. Concerning the investigated materials, two different types of stack configurations were employed, namely CFRP/CFRP stacks and hybrid Al/CFRP stacks. Consequently, the machining parameters for each experimental campaign were varied, and also the methods for signal analysis were changed to verify the performance of the different methodologies. Finally, for each case different neural network configurations were investigated for cognitive-based decision making. First of all, the applicability of the system was tested in order to perform tool wear diagnosis and forecast. Then, the discussion proceeds with a further aim of the research work, which is the reduction of the number of selected sensor signal features, in order to improve the performance of the cognitive decision-making system, simplify modelling and facilitate the implementation of these methodologies in a cloud manufacturing approach to tool condition monitoring. Sensor fusion methodologies were applied to the extracted and selected sensor signal features in the perspective of feature reduction with the purpose to implement these procedures for big data analytics within the Industry 4.0 framework. In conclusion, the positive impact of the proposed tool condition monitoring methodologies based on multiple sensor signal acquisition and processing is illustrated, with particular reference to the reliable assessment of tool state in order to avoid too early or too late cutting tool substitution that negatively affect machining time and cost

    Distributed machining control and monitoring using smart sensors/actuators

    Get PDF
    The study of smart sensors and actuators led, during the past few years, to the development of facilities which improve traditional sensors and actuators in a necessary way to automate production systems. In an other context, many studies are carried out aiming at defining a decisional structure for production activity control and the increasing need of reactivity leads to the autonomization of decisional levels close to the operational system. We suggest in this paper to study the natural convergence between these two approaches and we propose an integration architecture dealing with machine tool and machining control that enables the exploitation of distributed smart sensors and actuators in the decisional system

    Indirect multisignal monitoring and diagnosis of drill wear

    Get PDF
    A machine tool utilisation rate can be improved by an advanced condition monitoring system using modern sensor and signal processing techniques. A drilling test and analysis program for indirect tool wear measurement forms the basis of this thesis. For monitoring the drill wear a number of monitoring methods such as vibration, acoustic emission, sound, spindle power and axial force were tested. The signals were analysed in the time domain using statistical methods such as root mean square (rms) value and maximum. The signals were further analysed using Fast Fourier Transform (FFT) to determine their frequency contents. The effectiveness of the best sensors and analysis methods for predicting the remaining lifetime of a tool in use has been defined. The results show that vibration, sound and acoustic emission measurements are more reliable for tool wear monitoring than the most commonly used measurements of power consumption, current and force. The relationships between analysed signals and tool wear form a basis for the diagnosis system. Higher order polynomial regression functions with a limited number of terms have been developed and used to mimic drill wear development and monitoring parameters that follow this trend. Regression analysis solves the problem of how to save measuring data for a number of tools so as to follow the trend of the measuring signal; it also makes it possible to give a prognosis of the remaining lifetime of the drill. A simplified dynamic model has been developed to gain a better understanding of why certain monitoring methods work better than others. The simulation model also serves the testing of the developed automatic diagnostic method, which is based on the use of simplified fuzzy logic. The simplified fuzzy approach makes it possible to combine a number of measuring parameters and thus improves the reliability of diagnosis. In order to facilitate the handling of varying drilling conditions and work piece materials, the use of neural networks has been introduced in the developed approach. The scientific contribution of the thesis can be summarised as the development of an automatically adaptive diagnostic tool for drill wear detection. The new approach is based on the use of simplified fuzzy logic and higher order polynomial regression analysis, and it relies on monitoring methods that have been tested in this thesis. The diagnosis program does not require a lot of memory or processing power and consequently is capable of handling a great number of tools in a machining centre.reviewe

    Application of Audible Signals in Tool Condition Monitoring using Machine Learning Techniques

    Get PDF
    Machining is always accompanied by many difficulties like tool wear, tool breakage, improper machining conditions, non-uniform workpiece properties and some other irregularities, which are some of major barriers to highly-automated operations. Effective tool condition monitoring (TCM) system provides a best solution to monitor those irregular machining processes and suggest operators to take appropriate actions. Even though a wide variety of monitoring techniques have been developed for the online detection of tool condition, it remains an unsolved problem to look for a reliable, simple and cheap solution. This research work mainly focuses on developing a real-time tool condition monitoring model to detect the tool condition, part quality in machining process by using machine learning techniques through sound monitoring. The present study shows the development of a process model capable of on-line process monitoring utilizing machine learning techniques to analyze the sound signals collected during machining and train the proposed system to predict the cutting phenomenon during machining. A decision-making system based on the machine learning technique involving Support Vector Machine approach is developed. The developed system is trained with pre-processed data and tested, and the system showed a significant prediction accuracy in different applications which proves to be an effective model in applying to machining process as an on-line process monitoring system. In addition, this system also proves to be effective, cheap, compact and sensory position invariant. The successful development of the proposed TCM system can provide a practical tool to reduce downtime for tool changes and minimize the amount of scrap in metal cutting industry
    • 

    corecore