367 research outputs found

    A Comparative Analysis of Feature Extraction Techniques for EEG Signals from Alzheimer patients

    Get PDF
    This research deals with the study of Alzheimer Disease (AD). Electroencephalogram (EEG) signal is a clinical tool for the diagnosis and detection of AD. EEG signals are analyzed for the diagnosis of AD applying several linear and non-linear methods of signal processing. This work studies and implements several measures of EEG signal complexity and then compares the complexity features measured or extracted from EEG signals. Time domain analysis of EEG signals is performed using several signal processing techniques such as higher order moments, entropies and fractal dimension calculation using fractal analysis. Frequency domain analysis of EEG signals is performed using signal processing techniques such as Welch Power spectrum and Discrete Fourier Transform (DFT). EEG signal analysis using Wavelet Transform was also performed. Higher order moments, entropies, fractal dimension estimation using fractal analysis and Welch Power Spectrum are also implemented along with moving windows. This work also deals with the artifact removal or de-noising of EEG signals using a band pass filter. EEG signal data recorded from AD subjects and their respective age-matched control subjects are used to test the performance of the methods in diagnosing AD. In addition, this work outlines the drawbacks of the methods used and compares the methods for the best feature extraction techniques

    Analysis of ECG Signal Using WP-HH Transform

    Get PDF
    This paper introduces a method of ECG signal de noising using Hilbert Huang and Wavelet Packet Transform. Both HHT and WPT are signal processing method. Wavelet Packet transforms is used to decompose the electrocardiogram signal into a set of narrow band signals. Later the suitable threshold value is selected for each decomposed components. For those components for which wavelet coefficients are larger than the threshold value, HHT is applied. This method removes the noise as well as base line wonder effect from ECG signal and reduces the computing quantities and the decomposition layers of EMD. Paper includes features extraction method using ECG signal (IF, mean frequency, phase) which are useful to discriminate normal and abnormal signal. The simulation result indicates the proposed method is very effective as compared to other methods

    Condition Monitoring and Fault Diagnosis of Roller Element Bearing

    Get PDF
    Rolling element bearings play a crucial role in determining the overall health condition of a rotating machine. An effective condition-monitoring program on bearing operation can improve a machine’s operation efficiency, reduce the maintenance/replacement cost, and prolong the useful lifespan of a machine. This chapter presents a general overview of various condition-monitoring and fault diagnosis techniques for rolling element bearings in the current practice and discusses the pros and cons of each technique. The techniques introduced in the chapter include data acquisition techniques, major parameters used for bearing condition monitoring, signal analysis techniques, and bearing fault diagnosis techniques using either statistical features or artificial intelligent tools. Several case studies are also presented in the chapter to exemplify the application of these techniques in the data analysis as well as bearing fault diagnosis and pattern recognition

    A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection

    Get PDF
    Recently, fuzzy dispersion entropy (DispEn) has attracted much attention as a new nonlinear dynamics method that combines the advantages of both DispEn and fuzzy entropy. However, it suffers from limitation of insensitivity to dynamic changes. To solve this limitation, we proposed fractional fuzzy dispersion entropy (FFDispEn) based on DispEn, a novel fuzzy membership function and fractional calculus. The fuzzy membership function was defined based on the Euclidean distance between the embedding vector and dispersion pattern. Simulated signals generated by the one-dimensional (1D) logistic map were used to test the sensitivity of the proposed method to dynamic changes. Moreover, 29 subjects were recruited for an upper limb muscle fatigue experiment, during which surface electromyography (sEMG) signals of the biceps brachii muscle were recorded. Both simulated signals and sEMG signals were processed using a sliding window approach. Sample entropy (SampEn), DispEn and FFDispEn were separately used to calculate the complexity of each frame. The sensitivity of different algorithms to the muscle fatigue process was analyzed using fitting parameters through linear fitting of the complexity of each frame signal. The results showed that for simulated signals, the larger the fractional order q, the higher the sensitivity to dynamic changes. Moreover, DispEn performed poorly in the sensitivity to dynamic changes compared with FFDispEn. As for muscle fatigue detection, the FFDispEn value showed a clear declining tendency with a mean slope of −1.658 × 10−3 as muscle fatigue progresses; additionally, it was more sensitive to muscle fatigue compared with SampEn (slope: −0.4156 × 10−3) and DispEn (slope: −0.1675 × 10−3). The highest accuracy of 97.5% was achieved with the FFDispEn and support vector machine (SVM). This study provided a new useful nonlinear dynamic indicator for sEMG signal processing and muscle fatigue analysis. The proposed method may be useful for physiological and biomedical signal analysis

    Artificial intelligence based ECG signal classification of sendetary, smokers and athletes

    Get PDF
    The current study deals with the design of a computer aided diagnosis procedure to classify 3 groups of people with different lifestyles, namely sedentary, smoker and athletes. The ECG Classification based on statistical analysis of HRV and ECG features. The heart rate variability (HRV) parameters and ECG statistical features were used for the pattern recognition in Artificial Intelligence classifiers. The ECG was recorded for a particular time duration using the EKG sensor. The HRV, time domain and wavelet parameters were calculated using NI BIOMEDICAL STARTUP KIT 3.0 and LABVIEW 2010. The important HRV features, time domain and wavelet features were calculated by the statistical non-linear classifiers (CART and BT).the important parameters were fed as input to artificial intelligence classifiers like ANN and SVM. The Artificial Intelligence classifiers like artificial neural network (ANN) and Support vector Machine (SVM) were used to classify 60 numbers of ECG signal. It was observed from result that the Multi layer perceptron (MLP) based ANN classifier gives an accuracy of 95%, which is highest among other the classifiers. The HRV study implies that the time domain parameters (RMSSD and PNN50), frequency domain parameters (HF power and LF/HF peak), Poincare parameter (SD1) and geometric parameters (RR triangular index and TINN) are higher in athlete class and lower in smoker class. The Higher values of HRV parameters indicate increase in parasympathetic activity and decrease in sympathetic activity of the ANS. This indicates that the athlete class has better heath and less chance of cardiovascular diseases where smoker class has high chances of cardiovascular diseases. These HRV parameters of sedentary class were higher than smoker class but lower than athlete class. This indicates less chances of cardiovascular disease in sedentary class as compared to smoker class

    Refined multiscale entropy using fuzzy metrics: validation and application to nociception assessmentt

    Get PDF
    The refined multiscale entropy (RMSE) approach is commonly applied to assess complexity as a function of the time scale. RMSE is normally based on the computation of sample entropy (SampEn) estimating complexity as conditional entropy. However, SampEn is dependent on the length and standard deviation of the data. Recently, fuzzy entropy (FuzEn) has been proposed, including several refinements, as an alternative to counteract these limitations. In this work, FuzEn, translated FuzEn (TFuzEn), translated-reflected FuzEn (TRFuzEn), inherent FuzEn (IFuzEn), and inherent translated FuzEn (ITFuzEn) were exploited as entropy-based measures in the computation of RMSE and their performance was compared to that of SampEn. FuzEn metrics were applied to synthetic time series of different lengths to evaluate the consistency of the different approaches. In addition, electroencephalograms of patients under sedation-analgesia procedure were analyzed based on the patient’s response after the application of painful stimulation, such as nail bed compression or endoscopy tube insertion. Significant differences in FuzEn metrics were observed over simulations and real data as a function of the data length and the pain responses. Findings indicated that FuzEn, when exploited in RMSE applications, showed similar behavior to SampEn in long series, but its consistency was better than that of SampEn in short series both over simulations and real data. Conversely, its variants should be utilized with more caution, especially whether processes exhibit an important deterministic component and/or in nociception prediction at long scalesPeer ReviewedPostprint (published version

    Depth of anaesthesia assessment based on time and frequency features of simplified electroencephalogram (EEG)

    Get PDF
    Anaesthesiology is a medical subject focusing on the use of drugs and other methods to deprive patients’ sensation for discomfort in painful medical diagnosis or treatment. It is important to assess the depth of anaesthesia (DoA) accurately since a precise as- sessment is helpful for avoiding various adverse reactions such as intraoperative awareness with recall (underdosage), prolonged recovery and an increased risk of post- operative complications for a patient (overdosage). Evidence shows that the depth of anaesthesia monitoring using electroencephalograph (EEG) improves patient treat- ment outcomes by reducing the incidences of intra-operative awareness, minimizing anaesthetic drug consumption and resulting in faster wake-up and recovery. For an accurate DoA assessment, intensive research has been conducted in finding 'an ulti- mate index', and various monitors and DoA algorithms were developed. Generally, the limitations of the existing DoA monitors or latest DoA algorithms include unsatis- factory data filtering techniques, time delay and inflexible. The focus of this dissertation is to develop reliable DoA algorithms for accurate DoA assessment. Some novel time-frequency domain signal processing techniques, which are better suited for non-stationary EEG signals than currently established methods, have been proposed and applied to monitor the DoA based on simplified EEG signals based on plenty of programming work (including C and other programming language). The fast Fourier transform (FFT) and the discrete wavelet transforms are applied to pre-process EEG data in the frequency domain. The nonlocal mean, mobility, permu- tation entropy, Lempel-Ziv complexity, second order difference plot and interval feature extraction methods are modified and applied to investigate the scaling behaviour of the EEG in the time domain. We proposed and developed three new indexes for identifying, classifying and monitoring the DoA. The new indexes are evaluated by comparing with the most popular BIS index. Simulation results demonstrate that our new methods monitor the DoA in all anaesthesia states accurately. The results also demonstrate the advantages of proposed indexes in the cases of poor signal quality and the consistency with the anaesthetists’ records. These new indexes show a 3.1-59.7 seconds earlier time response than BIS during the change from awake to light anaesthesia and a 33-264 seconds earlier time response than BIS during the change from deep anaesthesia to moderate anaesthesia

    Entropy-based feature extraction for electromagnetic discharges classification in high-voltage power generation

    Get PDF
    This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI

    Robust approach for depth of anaesthesia assessment based on hybrid transform and statistical features

    Get PDF
    To develop an accurate and efficient depth of anaesthesia (DoA) assessment technique that could help anaesthesiologists to trace the patient’s anaesthetic state during surgery, a new automated DoA approach was proposed. It applied Wavelet-Fourier analysis (WFA) to extract the statistical characteristics from an anaesthetic EEG signal and to designed a new DoA index. In this proposed method, firstly, the wavelet transform was applied to a denoised EEG signal, and a Fast Fourier transform was then applied to the wavelet detail coefficient D3. Ten statistical features were extracted and analysed, and from these, five features were selected for designing a new index for the DoA assessment. Finally, a new DoA (WFADoA) was developed and compared with the most popular bispectral index (BIS) monitor. The results from the testing set showed that there were very high correlations between the WFADoA and the BIS index during the awake, light and deep anaesthetic stages. In the case of poor signal quality, the BIS index and the WFADoA were also tested, and the obtained results demonstrated that the WFADoA could indicate the DoA values, while the BIS failed to show valid outputs for those situations
    corecore